Transfer switching solutions from 40 to 6300 A

2017

\%. valbink herraim.

Contents

Security and reliability for your transfer applications p. 12
Remotely operated and Automatic Transfer Switching Equipment selection guide p. 14
TSE Technical Guide . p. 111
References list . p. 130
Manual transfer switches

Motorised modular transfer switches

ATyS M range p. 32
40 to 160 A

Enclosed solution

SOCOMEC offers a range of pre-equipped enclosures in steel. More information is available in the accessory pages of the different products.
$>$ A complete solution is also available to ensure power supply continuity.

ATyS Bypass solution 40 to 3200 A p. 88

Motorised transfer switches

ATyS S range p. 48

ATyS range p. 58
40 to 6300 A

Universal ATS controller

Automatic control of different switching technologies: circuit breakers, contactors, switches.

UL product range

UL range p. 92

SIRCOVER UL1008
. 100 to 1200 A

ATyS UL1008
100 to 400 A
p. 104

Any particular requirement?

Thanks to our extensive experience we have developed an impressive portfolio of customised solutions (motorised transfer switches with overlapping contacts and cooled poles, specific software, etc.). Please contact us if you have any specific requests.

For all your applications, even the most critical, trust the experts.

An independent manufacturer

The benefit of a specialist

3,500 m² of test platforms

One of the leading independent power testing labs in Europe

10 \%
 of turnover invested in R\&D

Always at the cutting-edge
of technology for innovative,
Always at the cutting-edge
of technology for innovative, high-quality products

60,000

on-site interventions per year

Nearly 400 experts in commissioning, technical audit, consultancy and maintenance

Your energy, our expertise

Critical Power
Ensuring the availability and storage of high quality power

With its wide range of continuously evolving products, solutions and services, Socomec are recognised experts in the cutting-edge technologies used for ensuring the highest availability of the electrical power supply to critical facilities and buildings, including:

- static uninterruptible power supplies (UPS) for high-quality power free of distortions

Power Control \& Safety Managing power and protecting persons and facilities

Active in the industrial switching market since its foundation in 1922, Socomec is today an undisputed leader in the field of low voltage switchgear, providing expert solutions that ensure:

Energy Efficiency
Managing the energy performance of buildings

Socomec solutions, from current sensors through to a wide choice of innovative scalable software packages are driven by experts in energy performance. They meet the critical requirements of facility managers and operators of commercial, industrial and local authority buildings for:

Expert Services

 Enabling available, safe and efficient energySocomec is committed to delivering a wide range of value-added services to ensure the reliability and optimisation of end-users' equipment:

- prevention and service operations to lower the risks and enhance the efficiency of operations,
and interruptions occurring on the primary power supply,
- changeover of static, high availability sources for transferring the supply to an operational back-up source,
- permanent monitoring of the electrical facilities to prevent failures and reduce operating losses,
- energy storage for ensuring the proper energy mix of buildings and for stabilisation of the power grid.
- isolation and on load breaking for the most demanding applications,
- continuity of the power supply to electrical facilities via manual or automatic changeover switching systems,
- protection of persons and assets via fusebased and other specialist solutions.

- measuring energy consumption, identifying sources of excess consumption and raising the awareness of occupants about their impact,
- limiting reactive energy and avoiding the associated tariff penalties,
- using the best available tariffs, checking utility bills and accurately distributing energy billing among consumer entities,
- monitoring and detecting insulation faults.

- measurement and analysis of a wide range of electrical parameters leading to recommendations for improving the site's power quality,
- optimisation of the total cost of ownership and support for a safe transition when migrating from an old to a new generation of equipment.
- consultancy, deployment and training from the project engineering stage through to final procurement.路

Adapted solutions

to meet your energy objectives

Expert Services your partner
 enabling available, safe and efficient energy

SOCOMEC is committed to deliver a wide range of valueadded services to ensure the availability of your critical installation, the safety of your site operations and the performance optimisation of your low voltage equipment during its life cycle. The expertise and proximity of our specialists are there to ensure the reliability and durability of your equipment.

Key figures

More than 370 Socomec experts supported by 175 engineers and technicians from our distributors, drive the solutions to your specific needs.

Our global presence includes:

- 10 branches in France,
- 12 European subsidiaries,
- 8 Asian subsidiaries,
- representatives in 70+ countries.

On-site service management

-60,000 service operations per year (mainly preventive visits).

- 98\% Service Level Agreement compliance rate.

Technical hotline network

- 20+ languages spoken.
- 3 advanced technical support centres.
- 100,000+ incoming calls handled per year.

Certified expertise

- 4,500 hours of technical training deployed per year (product, methodology and safety).

A cutting-edge laboratory

the backing of an expert

Created in 1965, SOCOMEC's laboratory brings its expertise to guarantee the reliability and the conformity of our products and solutions.
Since 2015, the laboratory renamed Tesla Lab - Power Testing and Certification in 2015, offers its testing and certification services to all its customers.

Proven expertise

 laboratories in Europe.Tesla Lab is an independant laboratory specialised in testing of LV switchgears, components and switchgear assemblies. $4 \mathrm{M} €$ has been invested since 2011 in this $2000 \mathrm{~m}^{2}$ laboratory, where 30 experts guarantee the quality of the performed tests, making the Tesla Lab one of the most modern

Vast range of tests

The laboratory has 100 MVA ($\mathrm{lcc}_{\mathrm{cc}} 100 \mathrm{kA}$ rms 1 s) short-circuit platform, three 10 kA overload platforms and many other test facilities covering $2000 \mathrm{~m}^{2}$ for:

- functional tests,
- mechanical tests: endurance,
- dielectric tests,
- environmental tests: vibrations,
- Ingress Protection (IP),
- temperature rise tests up to $60^{\circ} \mathrm{C}$ ambient.

International partnership

The laboratory is recognised by the major certification bodies worldwide: member of ASEFA and LOVAG, it is accredited by COFRAC, UL (CTDP), CSA (shared certification) and DEKRA (WMT).
The partnership with many international certification bodies guarantees the quality and safety requirements in each country.

Implementation of standard IEC/EN 61439

Electrical switchgear manufacturers

IEC/EN 61439 standards define the requirements of "Low voltage switchgear assemblies" as well as the tests necessary to ensure the achievement of the specified levels of performance. The compliance with these standards gives a guarantee of safety and performance to the user of the equipment

fisocomec
 innovative power solutions

EN61439 ready

The Assurance of an Original Manufacturer

An original manufacturer according to IEC/EN 61439 standards

Socomec offers a wide range of original manufacturer solutions complying with IEC 61439 standards.

- FLEXYS and CADRYS cabinet systems designed for distribution panel applications.
- Local switching and equipment cabinets covering requirements in power availability and safety.
- Components for integration.

Tesla Lab accredited by COFRAC
With its world-class testing facilities, the Tesla Lab can perform all of the tests required by IEC/EN 61439 standards for switchgear assemblies

We can therefore help you to:

- define a verification program,
- perform conformity tests,
- issue test reports in order to get certification from third party certification bodies (ASEFA, LOVAG, DEKRA, UL, CSA, COFRAC, ASTA...).

A high-quality power supply

innovative solutions

Critical equipment requires an uninterrupted and continuously available power supply, using energy of the highest quality. Our uninterruptible power supplies (UPS), static transfer systems (STS), energy storage systems and rectifiers comprise the most complete ranges in the world and cover a very wide variety of applications for every sector of activity.

100\% availability

High quality energy supply at any moment is strategic in many fields such as telecommunications, data processing or certain industrial processes. It is vital to a number of medical applications. In all these sectors, SOCOMEC has over 45 years of experience at your disposal.

Customised solutions

Underpinned by significant R\&D resources, our products are constantly evolving to adapt to the needs of our customers.
Our products have the approval of some of the most stringently demanding users: telecom companies, nuclear industry, naval industry, and many more.

Recognised expertise

SOCOMEC UPS solutions (inverters) have received the most prestigious awards in the industry; testimony to the way we listen to the needs of our users:

- Award for excellence in customer service (2004),
- Award for product innovation (2006),
- Award for Europe's best product range strategy (UPS) (2009),
- Award for product innovation (2011),
- Award for excellence in product differentiation (2013)
- Award for European company of the year in the UPS sector (2014)
- Award for European technological leadership (UPS) (2015)

Continuous innovation

Embedded in the DNA of SOCOMEC, innovation is a challenge that itself undergoes constant reinvention:

- First French manufacturer to offer static power supplies (1968)
- First UPS to use PWM technology (1980)
- First high-performance range of UPS with IGBT technology (1996)
- First modular UPS, with scalable and redundant architecture (2001)
- First manufacturer to integrate hybrid components (2001)
- First 200-kVA UPS with IGBT rectifier (2003)
- New battery charging design (2004)
- Dynamic energy storage system: the flywheel (2006)
- First UPS with 96\% efficiency in online double conversion mode (2008)
- Most compact STS with 19" hot-swappable rack design (2009)
- Most compact 900-kVA UPS (2010)
- First complete UPS range (10-2400 KW/ kVA) with triple-tier technology, 96\% efficiency and an output power factor of 1 (2012)
- "Forever Young" design for modular UPS (2014)

Always attentive to customer needs

With our extensive sales and after-sales network, we are always there for you. Our clients are happy with the quality of our products and their availability and our commitment to their needs.

Keeping on track with Socomec
SUNSYS PCS ${ }^{2}$ power converter storage solution

This bidirectional power converter is the key element of the energy storage system. It ensures that the batteries are charged and discharged according to the required functions.

Webspace at your service

all our solutions can be adapted to your needs

WWW.socomec.com

Expertise, customised solutions, products and services, downloads... All yours in a couple of clicks!Tap into our expertise
(2) Discover our customised solutions
(3) Access all our products and services

Download photos, documentation, software and CAD files

www.diris-digiware.com

Check out the dedicated site about DIRIS Digiware, our measuring and monitoring system. It gives you all the information you need, including videos, images and documentation on the most revolutionary solution on today's market.

Security and reliability for your transfer applications

An undisputed leader in the field of changeover switching, SOCOMEC is continuously innovating to ensure the continuity of electrical distribution.

From the COMO C manual transfer switch (25-100 A) to the ATyS p automatic transfer switch (up to 3200 A) and the ATyS d H remotely operated transfer switch (up to 6300 A), our range of changeover switches cover most applications as standard.

Products for all switching applications from 25 to 6300 A

SOCOMEC transfer switches can be used not only for normal/emergency source switching, but also to manage the switching of loads or for earthing/earthing solutions.

Your application	Manual changeover switches	Motorised changeover switches	Automatic changeover switches
Changeover switches (network/network - network/genset - genset/genset)	-	-	-
Bypass application	-	-	-
Other AC applications (load switching - grounding/earthing - phase switching)	-		
Photovoltaic applications	-		

Secure switching for all your transfers
Mains/Genset application

Expert Services

$>$ Study, definition, advice, implementation, maintenance and training...
Our Expert Services extend to a complete offer of customised services to make your project a success.

Secure switching compliant with standard IEC 60947-6-1

The standard IEC 60947-6-1 "Low-voltage switchgear and controlgear - Multiple function equipment - Transfer Switching Equipment" is dedicated to changeover switches.

This standard applies to Transfer Switching Equipment (TSE) with interruption of the supply to the load during transfer, the rated voltage of which does not exceed 1000 VAC or 1500 VDC, be it any of the following:

- MTSE

According to the standard IEC 60947-6-1, MTSE (Manually operated Transfer Switching Equipment) is manually operated transfer switching equipment. As such, it requires a person to be present to operate the handle.

- RTSE

According to the standard IEC 60947-6-1, RTSE (Remotely operated Transfer Switching Equipment) is transfer switching equipment that is controlled remotely. As such, they require an external controller to provide them with commands.

- ATSE

According to the standard IEC 60947-6-1, ATSE (Automatic Transfer Switching Equipment) is transfer switching equipment that is controlled automatically. It differs from RTSE in that it has an integrated controller. As such, these devices are self-monitoring in terms of power source availability, and will start up the genset if required and switch automatically to the power source that is present.

This standard also defines categories of use, depending on the needs of the application, which may apply to the TSE:

Type of current	Utilisation category		Type of load
	Application $\mathrm{A}^{(1)}$	Application $\mathrm{B}^{(2)}$	
Alternating current	AC-31A	AC-31B	Non-inductive or low-inductive loads
	AC-32A	AC-32B	Mixed resistive and inductive loads, including moderate overvoltages
	AC-33A	AC-33B	Motors or various loads including motors, resistive loads and loads comprising up to 30% incandescent lamps

UL applications

SOCOMEC UL 1008 transfer switches are designed for use in "total system optional standby power" applications with a secure transfer of load power between a regular source and a backup source.
"Optional standby systems" are installed to provide a backup power supply for buildings where a power failure could mean disruption, interruptions to operation or damage to products or processes.

Selection guide

Remotely operated and Automatic Transfer Switching Equipment ATyS

Which type of power supply?

Type of power supply
Power supply 12,24 or 48 VDC Single power supply 230 VAC Dual power supply 230 VAC

Connection of remote control interface
D10
D20
Application

Mains/Mains	- ${ }^{11}$	-(1)	- ${ }^{(1)}$	- ${ }^{11}$	- ${ }^{(1)}$	- ${ }^{11}$
Mains/Genset	- ${ }^{11}$	- ${ }^{(1)}$	- ${ }^{(1)}$	- ${ }^{11}$	-(1)	- ${ }^{11}$
Genset/Genset	- ${ }^{11}$	- ${ }^{(1)}$	-(1)	- ${ }^{11}$	-(1)	- ${ }^{11}$

Configuration

Configuration using potentiometers and dip switches
Configuration using display and keyboard
Voltage and frequency auto-configuration
Functions

Contact for product availability				-	-	
Fixed function inputs/outputs (defined by the factory)	-	-	-	-	-	-
Configurable inputs/outputs						
Voltage and frequency checks						
Phase rotation check						
Unbalanced phase check						
LED indication of source availability					-	
LED position indication						
Programming of genset startup						
Genset connected on switch II	-	-	-	-	-	-
Genset connected on switch I	-	-	-	-	-	-
Test On Load						
Test Off Load						
Load shedding						
Display and measurement of powers and energy (when utilising CTs)						

Supervision

Programming of genset startup
RS485 communication
Ethernet communication
Webserver via Ethernet module
Data logging
(1) With an external controller.
(2) Only on two pole versions.
(3) Only avaiable on the version with COM.
(4) Configurable output.

SIRCOVER

Manually operated Transfer Switching Equipment
from 125 to 3200 A

Function
SIRCOVER products are manually operated transfer switches with positive break indication. There are 3 ranges in the series:

- SIRCOVER for open transition switching (I-O-II) available in 3 or 4 pole,
- SIRCOVER for overlapping contact switching ($(-I+I I-I I)$,

For applications where both sources are synchronised and there is to be no interruption to the load supply during transfer - available in 3 or 4 pole.

- SIRCOVER Bypass. This combination of three interlocked load break switches provides 3+6 or $4+8$ poles for bypass applications.
They provide on-load transfer between two sources for any low voltage power circuit, as well as safety isolation by double breaking per pole. Other applications include source inversion (e.g. to change the direction of a motor) or grounding/earthing.

Advantages

A complete range

There are 3 SIRCOVER models to meet every need: The standard model I-0-II, the overlapping contact model $|-|+|-| | l$ and the Bypass model.

Easy to connect

For ratings of 2000 to 3200 A , we offer copper bar connection pieces. This gives you the option of different connection methods flat, edgewise with top or bottom bridging.

Stable positions

SIRCOVER devices have three stable positions, unaffected by voltage fluctuations and vibrations, protecting your loads from network disturbances.

On-load switching

With its AC-23 and AC-33 characteristics, tested according to standards IEC 60947-3 and IEC 60947-6-1, the SIRCOVER enables safe on-load switching for any type of load. With its on-load transfer capabilities, it is not necessary to isolate loads prior to transfer therefore the SIRCOVER offers an economical solution.

Strong points

$>$ Complete range

- Easy to connect
$>$ Stable positions
$>$ On-load switching

Conformity to standards

$>$ IEC 60947-6,-1
$>$ IEC 60947-3
$>$ GB 14048-11

Approvals and certifications ${ }^{(1)}$

(1) Product references on request.

What you need to know

- SIRCOVER (I-0-II) switches have 3 stable positions and are available as 3 or 4 pole models with ratings of 63 to 3200 A. They are available in steel or polyester enclosures (125 to 1600 A).
- SIRCOVER switches with 3 overlapping contact positions (I-I+II-II) are available as 3 or 4 pole models from 125 to 1600 A. They are available in steel enclosures.
- With 3 stable positions (l-0-II), SIRCOVER Bypass devices are a combination of three interlocked switches enabling the use with $3+6$ or $4+8$ poles from 125 to 1600 A. They are available in steel enclosures.
- All SIRCOVER can be operated with direct front operation or external handles.

- Connection pieces for copper bars allows the connection between the 2 power terminals of the same pole (Fig. 1 and 2) and the bridging of switch I and switch II on the top or the bottom for ratings 2000, 2500 and 3200 A (Fig. 3).

Top or bottom
flat connection

Top or bottom
edgewise connection

Top or bottom
bridging connection

Manually operated Transfer Switching Equipment
from 125 to 3200 A

References
SIRCOVER I-0-II

Also available

SIRCOVER I-I+II-II

From 125 to 1600 A: with these manual changeover switches you can transfer a normal source to a backup source without any interruption. All you have to do is ensure that both sources are synchronised.

References: 46AC XYYY

$\mathbf{X}=$ number of poles	Y= rating (A)	
$3: 3$ poles	$013: 125$	$050: 500$
$4: 4$ poles	$016: 160$	$063: 630$
	$020: 200$	$080: 800$
	$025: 250$	$100: 1000$
	$031: 315$	$120: 1250$
	$040: 400$	$160: 1600$

SIRCOVER Bypass

From 125 to 1600 A: with these manual changeover switches you can isolate then switch a backup power supply, such as a UPS, using 3 interlocking load break switches assembled into one very compact device.
There are two bypass models, one with open transition switching and the other with contact overlapping.
References: 4ZAC XYYY

References: 4ZAC XYYY					
Z = switching type	$X=\text { number }$ of poles	$\mathbf{Y}=$ rating (\mathbf{A})			
1 : 1-0-\|		$7: 3+6$ poles	013:125	050:500	
$6: 1-1+\|\|-\| \|$	9:4+8 poles	016:160	063: 630	H	
		020: 200	080: 800		
		025:250	100: 1000		
		031:315	120:1250		
		040:400	160:1600		

Accessories

Direct operation handle

External operation handle

Use
Door interlocked external front operation handles include an escutcheon, are padlockable and must be utilised with an extension shaft.

(1) IP: protection index according to IEC 60529.

Alternative S type handle cover colours

Use

For single lever handles S2, S3 and for double lever handle S4.
Other colours available: consult us.

	To be ordered in multiples of	Handle type	Reference
Colour	50	$\mathrm{~S} 2, \mathrm{~S} 3$	14010001
Light grey	50	$\mathrm{~S} 2, \mathrm{~S} 3$	14010011
Dark grey	50	S 4	14010031
Light grey	50	S 4	14010041
Dark grey			

S type handle adapter

Use

Enables S type handles to be fitted in place of existing older style SOCOMEC handles. Adapter can also be utilised as a spacer to increase the distance between the panel door and the handle lever.

Dimensions

Add 12 mm to the handle depth.

Colour	To be ordered in multiples of	External IP(1)	Reference
Black	1	IP65	14930000

[^0]
SIRCOVER

Manually operated Transfer Switching Equipment
from 125 to 3200 A

Accessories (continued)

Shaft guide for external operation

Use

For use with S type handles, to guide the shaft extension into the external handle. This accessory enables the handle to engage the extension shaft with a misalignment of up to 15 mm .
Recommended for a shaft length over 320 mm .

Designation	Reference
Shaft guide	14290000

SIRCOVER Bypass				
Rating (A)	Frame size	Length (mm)	Side \mathbf{X} (mm)	Reference
$125 . . .200$	B3	200	$320 . . .450$	14001020
125 ... 200	B3	320	$320 . . .570$	14001032
$250 . . .400$	B4	200	$298 . . .420$	14011520
$250 . . .400$	B4	320	$298 . .540$	14011532
$500 . . .630$	B5	200	$417 . . .539$	14011520
$500 . . .630$	B5	320	$417 . . .659$	14011532
$800 . . .1600$	B6... B7	200	550 ... 680	27993015
$800 . . .1600$	B6 ... B7	320	$550 . . .800$	27993018
$800 . . .1600$	B6 ... B7	450	$550 . . .930$	27993019

Bridging bars

Use

For creating a common connection between switches I \& II, on the top or bottom side of the SIRCOVER, to enable, for example, the load to be fed from either incoming source (I or II).

Rating (A)	Frame size	No. of poles	Diameter (mm)	Reference
$125 \ldots 200$	B3	$3 P$	20×2.5	41093019
$125 \ldots 200$	B3	4 P	20×2.5	41094019
250	B4	$3 P$	25×2.5	41093025
250	B4	4 P	25×2.5	41094025
$315 \ldots 400$	B4	$3 P$	32×5	41093039
$315 \ldots 400$	B4	4 P	32×5	41094039
500	B5	$3 P$	32×5	41093050
500	B5	4 P	32×5	41094050
630	B5	$3 P$	50×5	41093063
630	B5	4 P	50×5	41094063
$800 \ldots 1000$	B6	$3 P$	50×6	41093080
$800 \ldots 1000$	B6	$4 P$	50×6	41094080
1250	B6	$3 P$	60×8	41093120
1250	B6	$4 P$	60×8	41094120
1600	B7	$3 P$	90×10	41093160
1600	B7	$4 P$	90×10	41094160

Copper bar connection pieces

Use

For ratings 2000 to 3200 A .
Enables:

- Flat connection: the connection pieces provide a link between the two power terminals of the same pole (Fig. 1).
- Edgewise connection: the connection pieces provide a link between the two power terminals of the same pole and an edgewise bar connection terminal.
- Top or bottom bridging between two poles (Fig. 3).

Once installed, the power terminal is connection ready.

For 3200 A rating, connection pieces (part A) are supplied as standard. Bolt sets must be ordered separately.

Connection: the quantities given in the below table refer to the number of pieces required per pole, top or bottom.
Bridging connection: the quantities given refer to the number of pieces required to complete a single bridging connection between two poles.

	Reference	2000-2500 A			3200 A		
		Fig. 1	Fig. 2	Fig. 3	Fig. 1	Fig. 2	Fig. 3
		Connection		Bridging connection I- II	Connection		Bridging connection I - II
		Flat	Edgewise		Flat	Edgewise	
Connection - part A	26191200	1	1	$2^{(2)}$	included	included	included
Bolt kit 35 mm - part B	26991201	$1^{(1)}$		$2^{(2)}$	$1^{(1)}$		$2^{(2)}$
Bolt kit 45 mm - part B	26991200	$1^{(1)}$			$1^{(1)}$		
T + Bolt kit - part C	26291200		1	1		1	1
Bracket + Bolt kit - part D	26391200		1			1	
Bar + Bolt kit - part E	41090320			1			1

(1) Choose the bolt length according to the thickness of the bars being connected; if bar thickness is greater than 20 mm , 45 mm bolts are required.
(2) For bridging connections, quantity 2 pieces are required for creating the link between the two power terminals of the same pole for switch bodies I and II.
The quantities of the applicable pieces then need to be multiplied by the number of connection points (power terminals) in order to determine the total quantity required of each part. Example: for a 4 pole 2500 A SIRCOVER with upstream edgewise connection (Fig. 2) and downstream bridging (Fig. 3), the following quantities will be required:

Part	Upstream edgewise quantity	Downstream bridging quantity	Total quantity
A	8	8	16
B	0	8	8
C	8	4	12
D	8	0	8
E	0	4	4

Auxiliary contact

Use
Pre-breaking and signalling of positions | and II: 1 to 2 NO/NC auxiliary contacts in each position.
Low level AC: consult us.

Characteristics

Rating (A)	Frame size	Nominal current (A)	Operating current $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$			
			$\begin{gathered} 250 \text { VAC } \\ \text { AC-13 } \end{gathered}$	$\begin{gathered} 400 \text { VAC } \\ \text { AC-13 } \end{gathered}$	$\begin{gathered} 24 \text { VDC } \\ \text { DC-13 } \end{gathered}$	$\begin{gathered} 48 \text { VDC } \\ \text { DC-13 } \end{gathered}$
125 ... 3200	B3... B8	16	12	8	14	6

NO/NC changeover contact

Rating (A)	Frame size	Contact(s)	Reference
$125 \ldots 1600$	B3 \ldots B7	$1^{\text {st }} / 2^{\text {nd }}$	41090021
$2000 \ldots 3200$	B8	$1^{\text {st }} / 2^{\text {nd }}$	included

Fig. 1

(1) Single pole connection: 1 pole (top or bottom) comprises two power terminals which are to be linked with the copper connection kit.

Fig. 2

SIRCOVER

Manually operated Transfer Switching Equipment
from 125 to 3200 A

Accessories (continued)

Terminal shrouds

Use

Protection against direct contact with terminals or connecting parts.

Advantage

Perforations allow remote thermographic inspection without the need to remove the shrouds.

Rating (A)	Frame size	No. of poles	Position	Reference
$125 \ldots 200$	B3	3 P	top / bottom / front (I) / rear (II)	$26943014^{(1)(2)}$
$125 \ldots 200$	B3	4 P	top / bottom / front (I) / rear (II)	$26944014^{(1)(2)}$
$250 \ldots 400$	B4	3 P	top / bottom / front (I) / rear (II)	$26943021^{(1)(2)}$
$250 \ldots 400$	B4	4 P	top / bottom / front (I) / rear (II)	$26944021^{(1)(2)}$
$500 \ldots 630$	B5	3 P	top / bottom / front (I) / rear (II)	$26943051^{(1)(2)}$
$500 \ldots 630$	B5	4 P	top / bottom / front (I) / rear (II)	$26944051^{(1)(2)}$

(1) For complete shrouding at front, rear, top and bottom, order $4 x$ for a SIRCOVER and $6 x$ for a SIRCOVER Bypass; if equipped with bridging bars order $3 x$ for a SIRCOVER and $4 x$ for a SIRCOVER Bypass.
(2) For top and bottom shrouding for the front only, order $2 x$ for a SIRCOVER and a SIRCOVER Bypass.

Terminal screens

Use

Upstream and downstream protection against direct contact with terminals or connection parts. For upstream and downstream protection, order quantity 1.

Rating (A)	Frame size	No. of poles	Position	Reference
125... 200	B3	3 P	top / bottom	15093012
125... 200	B3	4 P	top / bottom	15094012
250... 400	B4	$3 P$	top / bottom	15093025
250... 400	B4	4 P	top / bottom	15094025
500... 630	B5	$3 P$	top / bottom	15093063
500... 630	B5	4 P	top / bottom	15094063
800 ... 1250	B6	$3 P$	top / bottom	15093080
$800 \ldots 1250$	B6	4 P	top / bottom	15094080
1600	B7	$3 P$	top / bottom	15093160
1600	B7	4 P	top / bottom	15094160
2000 ... 3200	B8	$3 / 4 \mathrm{P}$	top / bottom	included

Inter-phase barrier

Use
Safe isolation between the terminals, essential for use at 690 VAC or in a polluted or dusty atmosphere.

Rating (A)	Frame size	No. of poles	Reference
$125 \ldots 200$	B3	$2 P$	29980033
$125 \ldots 200$	B3	$3 P$	29980034
$250 \ldots 400$	B4	$2 P$	29980023
$250 \ldots 400$	B4	$3 P$	29980024
$500 \ldots 630$	B5	$2 P$	29980013
$500 \ldots 630$	B5	$3 P$	29980014
$800 \ldots 3200$	B6 \ldots B8	$2 / 3 P$	included

Key handle interlocking system

Use

- Padlocked (padlock not included). This device is factory mounted in the direct or external operation handle and allows the use of up to 3 padlocks.
- Locking:
- using lock (not supplied),
- using undervoltage coil.
- The interlocking positions are either determined as standard or configured by the user by removing the pre-form tabs.
- Padlocking and locking can be combined.
(1) Specific handle included.
(2) This locking facility can be configured by the user in the 3 positions

Fig. 1

Fig. 2

(1) Specific handle included.
(2) This locking facility can be configured by the user in the 3 positions.
Locking using 230 VAC undervoltage coil in position 0 (factory fitted)

SIRCOVER	SIRCOVER Bypass			
Rating (A) / Frame size	Rating (A) Frame size	Operation	Figure	Reference
$800 \ldots 3200 /$ B6 \ldots B8	$800 \ldots 1600 / B 6 \ldots$ B7	direct	3	consult us

Locking using Type K CASTELL lock (not supplied)				
SIRCOVER Rating (A) / Frame size	SIRCOVER Bypass Rating (A) / Frame size	Operation	Figure	Reference
125 ... 1600 / B3 ... B7	125 ... 630 / B3 ... B5	external	4	14997702
2000 ... 3200 / B8	$800 \ldots 1600$ / B6 ... B7	external	4	27997003

Other specific accessories

- Customised protection screens (for specific dimensions or high ambient temperatures).
- Connection accessories.
- Low level auxiliary contacts.

SIRCOVER

Manually operated Transfer Switching Equipment
from 125 to 3200 A

Polyester enclosed solution

General characteristics

- Adapted to chemical attack, dust hazard, contamination hazard and atmospheric corrosion.
- Operating handle: S type black handle padlockable in position 0.
- Protection degree: IP55 / IK 10.
- Colour: RAL 7030 (rating < 400 A), RAL 9002 (rating ≥ 400 A).
- Cable gland plate: none.
- Material: glass fibre reinforced polyester.
- Coating: none.
- Wall mounting: 4 mounting brackets supplied (not fitted).
- Locking device: screw (rating < 400 A), 3 mm double bar key (rating ≥ 400 A), key supplied.
- Miscellaneous: high resistance to chemicals, self-extinguishable at $960^{\circ} \mathrm{C}$, 3 bolted earth connection points.

References

		Top/bottom connection $\mathbf{I}-\mathbf{0}-\mathbf{I I}$ Reference
Rating (A)	No. of poles	42153012
125	$3 P$	42154012
125	$4 P$	42153016
160	$3 P$	42154016
160	$4 P$	42153025
250	$3 P$	42154025
250	$4 P$	42153040
400	$3 P$	42154040
400	$4 P$	42153063
630		$3 P$

Dimensions

(1) $125 \ldots 630 \mathrm{~A}: 45 \mathrm{~mm}$

Rating (A)	No. of poles	H x W x D (mm)	$\begin{aligned} & \text { Max. connection } \\ & \text { cross-section (mm²) } \end{aligned}$	M (mm)	N (mm)	\mathbf{Z} (mm)	Top/bottom connection		
							Ah (mm)	B1 (mm)	Weight (kg)
125	3 P	$540 \times 270 \times 233$	50	272	542	28	210	210	9
125	4 P	$540 \times 360 \times 233$	50	362	542	28	210	210	10
160	3 P	$540 \times 270 \times 233$	95	272	542	28	210	210	9
160	4 P	$540 \times 360 \times 233$	95	362	542	28	210	210	10
250	3 P	$540 \times 360 \times 233$	150	362	542	29	205	205	11
250	4 P	$540 \times 360 \times 233$	150	362	542	29	205	205	12
400	3 P	$800 \times 600 \times 300$	240	620	796	29	330	330	30
400	4 P	$800 \times 600 \times 300$	240	620	796	29	330	330	31
630	3 P	$800 \times 600 \times 300$	2×300	620	796	45	297	297	38
630	4 P	$800 \times 600 \times 300$	2×300	620	796	45	297	297	40

Steel enclosed solution

General characteristics

- Adapted to mechanical risk and dust hazard.
- Operating handle: S type black handle padlockable in position 0.
- Protection degree: IP54
- Colour: RAL 7035 up to 630 A, or RAL 7035 apart from casing and door RAL 9001.
- Cable gland plates: top and bottom.
- Material: XC steel, thickness 1.5 mm .
- Coating: epoxy polyester powder ($\leq 630 \mathrm{~A}$), polyester powder ($\geq 800 \mathrm{~A}$).
- Mounting: 4 wall mounting brackets - not fitted.
- Door: solid with hinges.
- Locking device: 3mm double bar key ($\leq 630 \mathrm{~A}$), 8mm spanner key ($\geq 800 \mathrm{~A}$), key supplied.
- Miscellaneous: multiple earth connection points, double door locking.

References

Rating (A)	No. of poles	Top/bottom connection I-0-II Reference
125	3 P	42123012
125	4 P	42124012
160	3 P	42123016
160	4 P	42124016
250	3 P	42123025
250	4 P	42124025
400	$3 P$	42123040
400	4 P	42124040
500	$3 P$	42123050
500	4 P	42124050
630	3 P	42123063
630	4 P	42124063
800	3 P	42123080
800	4 P	42124080
1250	3 P	42123120
1250	4 P	42124120
1600	3 P	42123160
1600	4 P	42124160

coff_298_b

Dimensions

Rating (A)	No. of poles	H x W x D (mm)	Max. connection cross-section (mm ${ }^{2}$)	M (mm)	N (mm)	Z (mm)	Top/bottom connection		
							Ah (mm)	B1 (mm)	Weight (kg)
125	$3 / 4 \mathrm{P}$	$500 \times 400 \times 250$	50	448	458	28	190	190	23
160	$3 / 4 \mathrm{P}$	$500 \times 400 \times 250$	95	448	458	28	190	190	23
250	$3 / 4 \mathrm{P}$	$500 \times 400 \times 250$	150	448	458	29.3	185	185	23
400	$3 / 4 \mathrm{P}$	$800 \times 600 \times 300$	240	758	552	29.3	330	330	45
500	$3 / 4 \mathrm{P}$	$800 \times 600 \times 300$	240	648	658	45	298	298	55
630	$3 / 4 \mathrm{P}$	$800 \times 600 \times 300$	2×300	648	658	45	290	290	55
800	$3 / 4 \mathrm{P}$	$1200 \times 700 \times 500$	2×300	740	1152	24	465	465	78
1,250	$3 / 4 \mathrm{P}$	$1200 \times 700 \times 500$	4×185	740	1152	24	465	465	88
1,600	$3 / 4 \mathrm{P}$	$1200 \times 700 \times 500$	4×300	740	1152		470	470	94

Manually operated Transfer Switching Equipment
from 125 to 3200 A

Characteristics according to IEC 60947-3 and IEC 60947-6-1
125 to 630 A

Thermal current $t^{\text {th }}$ at $40^{\circ} \mathrm{C}$		125 A	160 A	200 A	250 A	315 A	400 A	500 A	630 A
Frame size		B3	B3	B3	B4	B4	B4	B5	B5
Rated insulation voltage U_{i} M		800	800	800	1000	1000	1000	1000	1000
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$ (kV)		8	8	8	12	12	12	12	12
Rated operational currents $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ according to IEC 60947-6-1									
Rated voltage	Utilisation category	A/B ${ }^{(1)}$							
415 VAC	AC-31 B	125	160	200	250	315	400	500	630
415 VAC	AC-32 B				200	315	400	500	500
415 VAC	AC-33 B				200	200	200	400	400
Rated operational currents $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ according to IEC 60947-3									
Rated voltage	Utilisation category	A/B ${ }^{(1)}$							
415 VAC	AC-21 A / AC-21 B	125/125	160/160	200/200	250/250	315/315	400/400	500/500	630/630
415 VAC	AC-22 A / AC-22 B	125/125	160/160	200/200	250/250	315/315	400/400	500/500	630/630
415 VAC	AC-23 A / AC-23 B	125/125	160/160	200/200	200/200	315/315	400/400	500/500	500/630
500 VAC	AC-21 A / AC-21 B	125/125	160/160	200/200	250/250	315/315	400/400	500/500	630/630
500 VAC	AC-22 A / AC-22 B	125/125	160/160	200/200	200/250	200/315	200/400	500/500	500/500
500 VAC	AC-23 A / AC-23 B	80/80	80/80	80/80	200/200	200/200	200/200	400/400	400/400
$690 \mathrm{VAC}^{(3)}$	AC-21 A / AC-21 B	125/125	160/160	200/200	200/200	200/200	200/200	500/500	500/500
690 VAC $^{(3)}$	AC-22 A / AC-22 B	125/125	125/125	125/125	160/160	160/160	160/160	400/400	400/400
690 VAC ${ }^{(3)}$	AC-23 A / AC-23 B	63/80	63/80	63/80	125/125	125/125	125/125	400/400	400/400
220 VDC	DC-21 A / DC-21 B	125/125	160/160	200/200	250/250	250/250	250/250	500/500	630/630
220 VDC	DC-22 A / DC-22 B	125/125	160/160	200/200	250/250	250/250	250/250	500/500	630/630
220 VDC	DC-23 A / DC-23 B	125/125	125/125	125/125	200/200	200/200	200/200	500/500	630/630
$440 \mathrm{VDC}{ }^{(2)}$	DC-21 A / DC-21 B	125/125	125/125	125/125	200/200	200/200	200/200	500/500	630/630
$440 \mathrm{VDC}{ }^{(2)}$	DC-22 A / DC-22 B	125/125	125/125	125/125	200/200	200/200	200/200	500/500	630/630
440 VDC ${ }^{(2)}$	DC-23 A / DC-23 B	125/125	125/125	125/125	200/200	200/200	200/200	500/500	630/630
Operation power in AC-23 (kW) ${ }^{(4)}$									
At 415 VAC without AC pre-break		58/58	75/75	100/100	100/100	145/145	190/190	235/235	235/280
At 690 VAC without AC pre-break		50/62	50/62	50/62	90/90	90/90	90/90	310/310	310/310
Reactive power (kvar) ${ }^{(4)}$									
At 415 VAC (kvar)		60/60	75/75	100/100	125/125	150/150	200/200	250/250	250/300

Fuse protected short-circuit withstand as per IEC 60947-3 (kA rms prospective)

Prospective short-circuit current with gG DIN fuses at 415 VAC (kA rms)	100	100	50	50	50	50	50	50
Prospective short-circuit current with gG DIN fuses at 690 VAC (kA rms)				50	50	50	50	50
Associated fuse rating (A)	125	160	200	250	315	400	500	630

Short-circuit withstand without protection as per IEC 60947-3 Rated short-time withstand current $0.3 \mathrm{~s} \mathrm{I}_{\mathrm{ow}}$ at $415 \mathrm{VAC}(\mathrm{kA} \mathrm{rms})$
Rated short-time withstand current $1 \mathrm{~s} \mathrm{I}_{\mathrm{cw}}$ at 415 VAC (kA rms) Rated peak withstand current at 415 VAC (kA peak)

12	12	12	$15^{(5)}$	$15^{(5)}$	$15^{(5)}$	$17^{(5)}$	$17^{(5)}$
7	7	7	$8^{(5)}$	$8^{(5)}$	$8^{(5)}$	$11^{(5)}$	$10^{(5)}$
20	20	20	30	30	30	45	45

Short-circuit withstand without protection as per IEC 60947-6-1

Rated short-time withstand current $30 \mathrm{~ms} \mathrm{I}_{\mathrm{cw}}$ at 415 VAC (kA rms)	10	10	10	10	10	10	
Rated short-time withstand current $60 \mathrm{~ms} \mathrm{I}_{\mathrm{cw}}$ at 415 VAC (kA rms)						10	12.6

Connection

Minimum Cu cable cross-section as per IEC 60947-1 (mm²)	35	35	50	95	120	185	2×95	2×120
Recommended Cu busbar cross-section (mm^{2})							$2 \times 32 \times 5$	$2 \times 40 \times 5$
Maximum Cu cable cross-section (mm^{2})	50	95	120	150	240	240	2×185	2×300
Maximum Cu busbar width (mm)	25	25	25	32	32	32	50	50
Min./max. tightening torque (Nm)	9/13	9/13	9/13	20/26	20/26	20/26	20/26	20/26
Mechanical specifications								
Durability (number of operating cycles)	10,000	10,000	10,000	8,000	8,000	8,000	5,000	5,000
Weight 3 P (kg)	2.9	2.9	2.9	3.8	3.9	3.9	8.6	9.1
Weight 4 P (kg)	4.1	4.1	4.1	4.6	4.9	4.9	10.4	11.1

(1) Category with index $A=$ frequent operation - Category with index $B=$ infrequent operation
(2) 3-pole device with 2 pole in series for the " + " an 1 pole for the "-",

4 -pole device with 2 poles in series by polarity.
(3) Interphase barriers must be installed on the products.
(4) The power value is given for information only, the current values vary from one manufacturer to another. (5) Values given at 690 VAC.

800 to 3200 A

Thermal current $\mathrm{t}^{\text {th }}$ at $40^{\circ} \mathrm{C}$		800 A	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A
Frame size		B6	B6	B6	B7	B8	B8	B8
Rated insulation voltage $U_{i}(\mathrm{M}$		1000	1000	1000	1000	1000	1000	1000
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}(\mathrm{kV})$		12	12	12	12	12	12	12
Rated operational currents $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ according to IEC 60947-6-1								
Rated voltage	Utilisation category	A/B ${ }^{(1)}$	A/B ${ }^{(1)}$	A/B ${ }^{(1)}$	A/B ${ }^{(1)}$	$A / B^{(1)}$	$A / B^{(1)}$	$A / B^{(1)}$
415 VAC	AC-31 B	800	1000	1250	1600	2000	2500	3200
415 VAC	AC-32 B	800	1000	1250	1250	2000	2000	2000
415 VAC	AC-33 B	800	1000	1000	1000	1250	1250	1250
Rated operational currents $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ according to IEC 60947-3								
Rated voltage	Utilisation category	A/B ${ }^{(1)}$	A/B ${ }^{(1)}$	A/B ${ }^{(1)}$	A/B ${ }^{(1)}$	$A / B^{(1)}$	A/B ${ }^{(1)}$	$A / B^{(1)}$
415 VAC	AC-21 A / AC-21 B	800/800	1000/1000	1250/1250	1600/1600	-/2000	-/2500	-/3200
415 VAC	AC-22 A / AC-22 B	800/800	1000/1000	1250/1250	1600/1600	-/2000	-/2500	-/3200
415 VAC	AC-23 A / AC-23 B	800/800	1000/1000	1250/1250	1250/1250	-/1600	-/1600	-/1600
500 VAC	AC-21 A / AC-21 B	800/800	1000/1000	1250/1250	1600/1600	-/2000	-/2000	-/2000
500 VAC	AC-22 A / AC-22 B	630/630	800/800	1000/1000	1600/1600			
500 VAC	AC-23 A / AC-23 B	630/630	630/630	800/800	1000/1000			
$690 \mathrm{VAC}^{(3)}$	AC-21 A / AC-21 B	800/800	1000/1000	1250/1250	1600/1600	-/2000	-/2000	-/2000
690 VAC $^{(3)}$	AC-22 A / AC-22 B	630/630	800/800	1000/1000	1000/1000			
690 VAC ${ }^{(3)}$	AC-23 A / AC-23 B	630/630	630/630	800/800	800/800			
220 VDC	DC-21 A / DC-21 B	800/800	1000/1000	1250/1250	1250/1250			
220 VDC	DC-22 A/ DC-22 B	800/800	1000/1000	1250/1250	1250/1250			
220 VDC	DC-23 A / DC-23 B	800/800	1000/1000	1250/1250	1250/1250			
$440 \mathrm{VDC}{ }^{(2)}$	DC-21 A/DC-21 B	800/800	1000/1000	1250/1250	1250/1250			
$440 \mathrm{VDC}{ }^{(2)}$	DC-22 A / DC-22 B	800/800	1000/1000	1250/1250	1250/1250			
440 VDC ${ }^{(2)}$	DC-23 A / DC-23 B	800/800	1000/1000	1250/1250	1250/1250			
Operation power in AC-23 (kW) ${ }^{(4)}$								
At 415 VAC without AC pre-break		375/375	450/450	560/560	560/560	-/710	-/710	-/710
At 690 VAC without AC pre-break		475/475	475/475	620/620	620/620			
Reactive power (kvar) ${ }^{(4)}$								
At 415 VAC (kvar)		400/400	500/500	650/650	650/650	-/850	-/850	-/850

Fuse protected short-circuit withstand as per IEC 60947-3 (kA rms prospective)

Prospective short-circcuit current with gG DIN fuses at 415 VAC (kA rms)	50	50	100	100			
Prospective short-circuit current with gG DIN fuses at 690 VAC (kA rms)	50	50	50				
Associated fuse rating (A)	800	1000	1250	2x800			
Short-circuit withstand without protection as per IEC 60947-3							
Rated short-time withstand current $0.3 \mathrm{~s} \mathrm{I}_{\mathrm{cw}}$ at 415 VAC (kA rms)	64	64	64	78	78	78	78
Rated short-time withstand current $1 \mathrm{~s} \mathrm{I}_{\text {cw }}$ at 415 VAC (kA rms)	35	35	35	50	50	50	50
Rated peak withstand current at 415 VAC (kA peak)	55	55	80	110	120	120	120

Short-circuit withstand without protection as per IEC 60947-6-1
Rated short-time withstand current $30 \mathrm{~ms} \mathrm{I}_{\mathrm{cw}}$ at 415 VAC (kA rms)
Rated short-time withstand current $60 \mathrm{~ms} \mathrm{I}_{\mathrm{cw}}$ at 415 VAC (kA rms)

Connection

Minimum Cu cable cross-section as per IEC 60947-1 (mm²)	2×185						
Recommended Cu busbar cross-section (mm^{2})	$2 \times 50 \times 5$	$2 \times 63 \times 5$	$2 \times 60 \times 7$	$2 \times 100 \times 5$	$3 \times 100 \times 5$	$2 \times 100 \times 10$	$3 \times 10 \times 100$
Maximum Cu cable cross-section (mm^{2})	4×185	4×185	4×185	6×185			
Maximum Cu busbar width (mm)	63	63	63	100	100	100	100
Min./max. tightening torque (Nm)	20/26	20/26	20/26	40/45	40/45	40/45	40/45
Mechanical specifications							
Durability (number of operating cycles)	4,000	4,000	4,000	3,000	3,000	3,000	3,000
Weight 3 P (kg)	20.5	21.0	21.6	25.7	42.0	42.0	52.3
Weight 4 P (kg)	24.8	25.6	26.2	32.0	52.9	52.9	66.6

[^1]
SIRCOVER

Manually operated Transfer Switching Equipment
from 125 to 3200 A

Dimensions

SIRCOVER 125 to 1600 A / B3 to B7

Direct front operation

A. S2 type handle for external operation: 125 to 630 A B. S4 type handle for external operation: 800 to 1600 A

External front operation

1. Terminal shrouds
2. Direct operation handle:

- 125 to 630 A: $L 1=140 \mathrm{~mm}$,
-800 to 1600 A: $L 1=210 \mathrm{~mm}$

	Overall dimensions				Terminal shrouds	Switch body				Switch mounting			Connection											
Rating (A)/ Frame size	$\begin{gathered} \text { A } \\ 3 \mathrm{p} . \end{gathered}$	$\begin{gathered} A \\ 4 \mathrm{p} . \end{gathered}$	C	$\underset{\text { min }}{\mathrm{E}}$	AC	H	HA	$\begin{gathered} \mathrm{J} \\ \text { 3p. } \end{gathered}$	$\begin{gathered} \mathrm{J} \\ 4 \mathrm{p} . \end{gathered}$	$\begin{gathered} M \\ 3 \mathrm{p} . \end{gathered}$	$\begin{gathered} M \\ 4 \mathrm{p} . \end{gathered}$	N	T	U	v	w	$\begin{gathered} \mathrm{X} \\ 3 \mathrm{p} . \end{gathered}$	$\begin{gathered} \mathrm{X} \\ 4 \mathrm{p} . \end{gathered}$	Y	z	Z1	AA	BA	AC
125/B3	221	251	218	$208 . .436$	235	148	25	182	212	156	186	101	36	20	25	8.5	56	50	3.5	28	124	135	115	10
160 / B3	221	251	218	208... 436	235	148	25	182	212	156	186	101	36	20	25	8.5	56	50	3.5	28	124	135	115	10
200 / B3	221	251	218	$208 . . .436$	235	148	25	182	212	156	186	101	36	20	25	8.5	56	50	3.5	28	124	135	115	10
$250 / B 4$	262	312	218	208... 436	280	148	25	223	273	196	246	116	50	25	30	11	61	61	3.5	30	124	160	130	15
315/B4	262	312	218	208... 436	280	148	25	223	273	196	246	116	50	35	35	11	61	61	3.5	30	124	170	140	15
400 / B4	262	312	218	208 ... 436	280	148	25	223	273	196	246	116	50	35	35	11	61	61	3.5	30	124	170	140	15
$500 / B 5$	319	379	295	285... 513	401	225	25	272	332	246	306	176	65	32	37	13	70.5	65.5	5	43	180	235	205	15
630 / B5	319	379	295	285... 513	400	225	25	272	332	246	306	176	65	45	50	13	70.5	65.5	5	43	180	260	220	20
800 / B6	386	466	375	$425 . . .577$	459	298	29	306.5	386.5	255	336	250	80	50	60.5	15	48	48	7	66.5	253.5	321		26.5
1000 / B6	386	466	375	425 ... 577	459	298	29	306.5	386.5	255	336	250	80	50	60.5	15	48	48	7	66.5	253.5	321		26.5
1250 / B6	386	466	375	425 ... 577	459	298	29	306.5	386.5	255	336	250	80	60	65	16×11	48	48	7	66.5	255.5	330		29.5
1600/B7	478	598	375	425 ... 577	461	298	29	388.5	518.5	347	467	250	120	90	43.5	12.5×5	54	54	8	66.5	255.5	288		15

SIRCOVER 2000 to 3200 A / B8

Direct front operation

Rating (A) / Frame size	Overall dimensions		Switch mounting	
	$\begin{gathered} \text { A } \\ \text { 3p. } \end{gathered}$	$\begin{gathered} \text { A } \\ 4 \mathrm{p} . \end{gathered}$	$\begin{gathered} M \\ 3 \mathrm{p} . \end{gathered}$	$\begin{gathered} M \\ 4 \mathrm{p} . \end{gathered}$
2000... 3200 / B8	478	598	347	467

SIRCOVER Bypass 125 to 1600 A / B3 to B7
Direct front operation

External front operation

A. S2 type handle for external operation: 125 to 200 A B. S3 type handle for external operation: 250 to 630 A C. External double lever handle: 800 to 1600 A

1. Terminal shrouds
2. Direct operation handle:
-125 to 200 A: L1 = 140 mm
-250 to $630 \mathrm{~A}: L 1=210 \mathrm{~mm}$,
800 to 1600 A: L1 $=$ diameter 330 mm .

Rating (A) /	Overall dimensions				Terminal shrouds AC	Switch body				Switch mounting			Connection												
Frame size	$\begin{gathered} A \\ 3+6 p . \end{gathered}$	$\begin{gathered} A \\ 4+8 p . \end{gathered}$	C	$\begin{gathered} E \\ \min \end{gathered}$		H	HA	$\underset{3+6 p .}{J}$	$\underset{4+8 p}{\mathrm{~J}}$	$\begin{gathered} M \\ 3+6 p . \end{gathered}$	$\begin{gathered} M \\ 4+8 p . \end{gathered}$	N	T	U	V	W	$\begin{gathered} X \\ 3+6 p . \end{gathered}$	$\begin{gathered} X \\ 4+8 p . \end{gathered}$	Y	Z	Z1	Z2	AA	BA	AC
125 / B3	221	251	313	320	235	243	25	182	212	156	186	101	36	20	25	8.5	56	50	3.5	28	124	219	135	115	10
160 / B3	221	251	313	320	235	243	25	182	212	156	186	101	36	20	25	8.5	56	50	3.5	28	124	219	135	115	10
200 / B3	221	251	313	320	235	243	25	182	212	156	186	101	36	20	25	8.5	56	50	3.5	28	124	219	135	115	10
250 / B4	262	312	313	298	280	243	25	223	273	196	246	116	50	25	30	11	61	61	3.5	30	124	219	160	130	10
400 / B4	262	312	313	298	280	243	25	223	27	196	246	116	50	35	35	11	61	61	3.5	30	124	219	170	140	5
500 / B5	319	379	432	417	401	362	25	272	332	246	306	176	65	32	37	13	70.5	65.5	5	43	180	317	235	205	15
630 / B5	319	379	432	417	400	362	25	272	332	246	306	176	65	45	50	13	70.5	65.5	5	43	180	317	260	220	20
800 / B6	386	46	56	55	45	479	29	306.5	386.5	255	335	250	80	50	60.5	15	48	48	7	66.5	253.5	439.5	321		26.5
1250 / B6	386	466	560	550	459	479	29	306.5	386.5	255	335	250	80	60	65	16×11	48	48	7	66.5	253.5	439.5	320		29.25
1600/B7	478	598	560	550	461	479	29	388.5	518.5	347	467	250	120	90	43.5	12.5×5	54	54	8	66.5	253.5	439.5	288		15

Connection terminals

SIRCOVER and
SIRCOVER Bypass 800 A / B6

SIRCOVER 1600 to 3200 A / B7 to B8 SIRCOVER Bypass 1600 A / B7

SIRCOVER and
SIRCOVER Bypass 1250 A / B6

svr_078_b_1_x_cat

SIRCOVER

Manually operated Transfer Switching Equipment
from 125 to 3200 A

Dimensions for external handles
SIRCOVER 125 to 630 A / B3 to B5
Handle type
S type

Direction of operation | Front operation |
| :---: |
| or |
| ItII |

(1) Ø31 to Ø37: rear screw mounting,

Ø37: front clip mounting.

SIRCOVER 800 to 1600 A / B6 to B7

(1) $\varnothing 31$ to $\varnothing 37$: rear screw mounting,

Ø37: front clip mounting.
(2) $\emptyset 6$ to $\oslash 7$: clip mounting

SIRCOVER 2000 to 3200 A / B8
Handle type
S type
with V Escutcheon
Direction of operation

SIRCOVER

SIRCOVER Bypass 125 to 200 A / B3
Handle type
S2 type
Direction of operation
(1) $\varnothing 31$ to $\varnothing 37$: rear screw mounting,

Ø37: front clip mounting.

SIRCOVER Bypass 250 to 630 A / B4 to B5

(1) $\varnothing 31$ to $\varnothing 37$: rear screw mounting,
$\varnothing 37$: front clip mounting

SIRCOVER Bypass 800 to 1600 A / B6 to B7

The ATyS M range: safe and reliable solutions

RTSE
(Remotely operated)

ATyS t M
Automatic Transfer Switching Equipment

Automatic controller to manage mains/ mains applications

Automatic controller to manage mains/ genset applications

ATyS p M
Automatic Transfer Switching Equipment

Mains/mains and mains/genset Tripping function, programmable parameters and communication

The ATyS M range: safe and reliable solutions

The advantages

Secure operation

- Electrical and mechanical interlocking for optimum safety.
- Positive break indication with two mechanical switch position indicators for clear and secure use.
- Padlocking in the 0 position enables the lockout function on each product.
- Padlocking in 3 positions can also be configured prior to installation.
- Permanent indication of product availability thanks to the Watchdog relay, which constantly monitors the product operating conditions (ATyS g M and ATyS p M).

High

performance

- On-load making and isolation for using a single product with any load type, including inductive loads (AC-33).
- Immunity to control voltage fluctuations thanks to stable positions and power supply only required during switching.
- Excellent dynamic withstand for improved safety when closing on a short-circuit.
- Extremely low electrical blackout time (ATyS d M <90ms) guaranteed thanks to the electromagnetic actuator technology used with rotary self-cleaning contacts.

Intuitive

- Manual emergency control: The product can be operated quickly and safely using an emergency handle.
- Simple selection of operating mode (Auto/ Manual) using an integrated selector.

Rapid commissioning

- ATyS d M: No configuration required.
- ATyS t M and ATyS g M: Configuration in just a few minutes using a screwdriver.
- ATyS p M: Simplified configuration (EASY CONFIG software and LCD screen on the device).

Easy to install

- Two switching devices mounted side-by-side for easy access to cabling with installation in a standard 18 module enclosure (product has a very low depth).
- Quick and easy mounting on a DIN rail or back plate.
- Simplified wiring thanks to the cage clamp terminals and dedicated bridging bars that allows a common outgoing connection whilst retaining the cage terminal connections.

Performance

IEC 60947-6-1 / GB 14048-11
$>$ AC 32B - up to 160 A
$>$ AC 33B - up to 125 A
$>$ AC 33iB - up to 160 A

IEC 60947-3
AC 23B - up to 160 A

Expert Services

Study, definition, advice, implementation, maintenance and training...
$>$ Our Expert Services team offers customised support to make your project a success.

A fully compact solution

- All-in-one solution, with minimum risk of incorrect mounting or wiring.
- Highly reliable thanks to the compliance with IEC 60947-6-1, the standard governing transfer switching equipment.
- Simplified ordering process: a single reference for the complete solution.

ATyS d M

Remotely operated Transfer Switching Equipment from 40 to 160 A

Function
ATyS d M devices are 2 pole or 4 pole transfer switches that are remotely controlled using volt-free contacts from an external controller. They are modular products with positive break indication. They are intended for use in low voltage power supply systems where a brief interruption of the load supply is acceptable during transfer.

Advantages

Secure

ATyS M have both electrical and mechanical interlocks for optimum security. They also feature a positive break indicator, confirming switch position with dual mechanical indicators for increased safety.

High-speed transfer

ATyS d M devices are based on a coil solution with rotating contacts, therefore ensuring an extremely short black-out duration (<90ms).

Superior electrical performance

ATyS M devices are compliant with IEC 60947-6-1, the standard governing transfer switches. Their AC-33B properties of up to 125 A mean you can use the same product for resistive and inductive loads.

Immune to voltage fluctuations

The power supply of the ATyS d M is only active during transfer. As the product is based on stable positions, it is not affected by network voltage fluctuations.

Operating modes

Easy selection of AUT/MAN mode

Manual emergency operation

Padlocking facility

What you need to know

Electrical control

The positions are controlled by dry contacts on any external automated system（e．g．ATyS C30）．
These positions are stable even in case of loss of input supply．

Control logic

Two types of control logic are offered：
－Pulse logic
－A switching command of at least 60 ms is necessary to initiate operation．
－Commands I and II have priority over command 0.
－The first command received（l or II）has priority as long as it remains present．
－Contactor logic
－Command 0 must be maintained．
－If command I or II disappears， the device returns to position 0 ， so long as the power supply is available．

Power supply
The ATyS d M is equipped with two independent 230 VAC power inputs（176－288 VAC）， $50 / 60 \mathrm{~Hz}(45 / 65 \mathrm{~Hz})$ ．
These two supplies can be connected individually；one to switch I and the other to switch II：
－Power supply 101－102 must be available to reach position I
－Power supply 201－202 must be available to reach position II．
The use of a dual power supply（DPS）or an external supply module secures the command of the 3 positions irrespective of the power supply source．
In this case，both the supply inputs must be connected in parallel．

	$\square \square 0$	$\square \square \square \square$	$\square 11$.	$\square \square \square$
	回 ON	且 ON	® ON	® ON
	$\begin{aligned} & \bigotimes_{O R}^{O N} \\ & \text { ON } \end{aligned}$		$\begin{gathered} \underbrace{}_{O R} \mathrm{ON} \\ 囚_{0} \mathrm{ON} \end{gathered}$	$\underbrace{\infty}_{\text {OR }} \mathrm{ON}$

References

ATyS d M

Rating（A）	No．of poles	ATyS d M	Bridging bars	Voltage sensing and power supply tap	Terminal shrouds	Auxiliary contact block
	2 P	93232004	$\begin{gathered} 2 \mathrm{P} \\ 13092006 \\ 4 \mathrm{P} \\ 13094006 \end{gathered}$	$\begin{gathered} 2 \text { pieces } \\ 13994006 \end{gathered}$	2 pieces $22944016^{(1)}$	$1^{\text {st }}$ unit included
40 A	4 P	93234004				
63 A	2 P	93232006				
	4 P	93234006				
80 A	2 P	93232008				$2^{\text {nd }}$ unitSeparate common points$13090001^{(2)}$
	4 P	93234008				
100 A	2 P	93232010				
	4 P	93234010				
125 A	2 P	93232012				Linked common points $13090011^{(2)}$
	4 P	93234012				
160 A	2 P	93232016	13092016			
	4 P	93234016	13094016			

[^2] （2） 1 NO／NC contact block for positions I， 0 and II．

ATyS t M - ATyS g M Automatic Transfer Switching Equipment from 40 to 160 A

Function

ATyS t M and ATyS g M are modular automatic transfer switches with positive break indication. ATyS t M are 4 pole (three-phase) devices and ATyS g M are 2 or 4 pole (single or three-phase) devices.
They have all the functions of the ATyS d M together with an integrated controller, giving them automatic features dedicated to mains/mains (ATyS t M) and mains/genset (ATyS g M) applications. They are intended for use in low voltage power supply systems where a brief interruption of the load supply is acceptable during transfer.

Advantages

Quick start

ATyS t M and g M transfer switches offer significant time saving during commissioning (the process takes 2 to 3 minutes). Thanks to the design that allows commissioning through just one potentiometer (4 on the ATyS g M) and four DIP switches, a screwdriver is all that is required to configure the parameters.

ATyS g M: dedicated to mains/genset applications
In addition to its single-phase and threephase voltage \& frequency monitoring for both incoming sources, the product's integrated controller also features functions that are specific to mains/genset applications (genset control, test on load, etc.).

ATyS t M: dedicated to three-phase mains/mains applications
The ATyS t M integrated controller has been designed to provide all the functions necessary for these applications (operation with or without priority, preferred source selection) together with the monitoring of the voltage and frequency of both sources for three-phase networks.

Secure programming

To ensure that the correct configuration is maintained an optional sealable cover can be fitted in order to avoid any unintentional modifications to the programming.

The solution for
$>$ High-rise buildings
$>$ Data centers
$>$ Healthcare buildings

Strong points

Fast commissioning
$>$ ATyS d M with an integrated controller for dedicated mains/mains or mains/genset functions
Secure programming

Conformity to standards

$>$ IEC 60947-6,-1
$>$ IEC 60947-3
GB 14048.11

Approvals and certifications ${ }^{(1)}$

KEMA

(1) Product references on request.

ATyS t M - ATyS g M

Automatic Transfer Switching Equipment
from 40 to 160 A

What you need to know

The ATyS t M and ATyS g M are automatic transfer switching equipment that include a fully integrated ATS controller. These products are self powered from incoming supplies: $230 \mathrm{VAC}(176-288 \mathrm{VAC}), 50 / 60 \mathrm{~Hz}(45 / 65 \mathrm{~Hz})$.

References

ATVS t M								
Rating (A)	No. of poles	Network (VAC)	ATyS t M	Bridging bars	Voltage sensing and power supply tap	Terminal shrouds	Auxiliary contact block	Sealable cover
40 A	4 P	$230 / 400$	93444004				1 unit	

(1) For complete upstream and downstream protection please order quantity 2.
(2) 1 NO/NC contact block for positions I, 0 and II.

ATyS g M								
Rating (A)	No. of poles	Network (VAC) ${ }^{(3)}$	ATyS g M	Bridging bars	Voltage sensing and power supply tap	Terminal shrouds	Auxiliary contact block	Sealable cover
40 A	2 P	230	93532004	$\begin{gathered} 2 \mathrm{P} \\ 13092006 \\ 4 \mathrm{P} \\ 13094006 \end{gathered}$	$\begin{gathered} 2 \text { pieces } \\ 13994006 \end{gathered}$	$\begin{gathered} 2 \text { pieces } \\ 22944016^{(1)} \end{gathered}$	1 unitSeparate commonpoints$13090001^{(2)}$Linked commonpoints$13090011^{(2)}$	$\begin{gathered} 2 \mathrm{P} \\ 13592000 \\ 4 \mathrm{P} \\ 13590000 \end{gathered}$
	4 P	230/400	93544004					
63 A	2 P	230	93532006					
	4 P	230/400	93544006					
80 A	2 P	230	93532008					
	4 P	230/400	93544008					
100 A	2 P	230	93532010					
	4 P	230/400	93544010					
125 A	2 P	230	93532012					
	4 P	230/400	93544012					
160 A	2 P	230	93532016	13092016				
	4 P	230/400	93544016	13094016				

[^3]

Function

ATyS p M are single-phase or three-phase modular automatic transfer switches with positive break indication.
Functions include ATyS t M and ATyS g M capability, with additional programmable parameters and a tripping function. A product model with communication is available. They are intended for use in low voltage power supply systems where a brief interruption of the load supply is acceptable during transfer.

Advantages

Flexible programming

ATyS p M time delays and inputs/outputs are completely configurable, hence enabling the easy monitoring of specific applications (load shedding, test...) and the definition of an operating cycle specifically adapted to your application.

Trip function

ATyS p M features a function for returning to the 0 position in case of the loss of both power supply sources (tripping). This protects the load from issues due to source instability.

Communication and configuration

A specific version of ATyS p M is available with integrated Modbus communication. This gives acces to most product data (status, voltages, frequencies....). A user friendly configuration software is also available free (Easyconfig) to configure, view and save all the parameters in the ATyS p M.

Remote control interface

Specifically designed for installations where the product is enclosed, the remote interface displays product status on the front panel (D10) or displays and controls with access to programming (D20).

The solution for
$>$ High-rise buildings
$>$ Data centres
$>$ Healthcare buildings
> Banks and insurance companies
$>$ Transport (airports, tunnels, etc.)

Strong points

$>$ Flexible programming
$>$ Trip function
$>$ Communication and configuration
$>$ Remote control interface

Conformity to standards

$>$ IEC 60947-6,-1
$>$ IEC 60947-3
$>$ GB 14048.11

Approvals and certifications

KEMA
KeUR

What you need to know

The ATyS p M are automatic transfer switching equipment that include a fully integrated ATS controller. These products are self powered from incoming supplies: 230 VAC (160$305 \mathrm{VAC}), 50 / 60 \mathrm{~Hz}(45 / 65 \mathrm{~Hz})$. Automatic products are all equipped with a sequence logic. Here is an example of the sequence logic in case of loss and return of the preferred source.

Easyconfig

Easyconfig software is the ideal solution to save time and simplify complex configuration.

You can configure the following parameters:

- application type,
- voltage and frequency thresholds,
- timers,
- inputs/outputs...

ATyS p M

Rating (A)	No. of poles	Network (VAC) ${ }^{(3)}$	ATyS p M	$\begin{aligned} & \text { ATyS p M } \\ & + \text { com } \end{aligned}$	Bridging bars	Voltage sensing and power supply tap	Terminal shrouds	Auxiliary contact block	Remote interface
40 A	4 P	230/400	93644004	93844004	$\begin{gathered} 4 \mathrm{P} \\ 13094006 \end{gathered}$	$\begin{gathered} 2 \text { pieces } \\ 13994006 \end{gathered}$	$\begin{gathered} 2 \text { pieces } \\ 22944016^{11} \end{gathered}$	1 pieceSeparate commonpoints$13090001^{(2)}$Linked commonpoints$13090011(2)$	$\begin{gathered} \text { D10 } \\ 95992010 \end{gathered}$
63 A	4 P	230/400	93644006	93844006					
80 A	4 P	230/400	93644008	93844008					
100 A	4 P	230/400	93644010	93844010					
125 A	4 P	230/400	93644012	93844012					95992020
160 A	4 P	230/400	93644016	93844016	13094016				

[^4]
ATyS M range
 ATyS d M, ATyS t M, ATyS g M, ATyS p M
 from 40 to 160 A

Accessories
 Bridging bars

Use
Used to bridge the outgoing common connection between switch I and switch II. The bridging bar does not reduce the connection capacity of the cage terminals.

Rating (A)	No. of poles	Reference
$40 \ldots 125$	$2 P$	13092006
160	$2 P$	13092016
$40 \ldots 125$	$4 P$	13094006
160	$4 P$	13094016

Voltage sensing and power supply tap

Use
It allows connection of $2 x \leq 1.5 \mathrm{~mm}^{2}$ voltage sensing or power cables.

The single-pole voltage sensing tap can be mounted in any of the terminals (incoming) without reducing their connecting capacity.

Rating (A)	Pack	Reference
$40 \ldots 160$	2 pieces	13994006

Terminal shrouds

Use

Protection against direct contact with terminals or connecting parts.
Advantages of the terminal shrouds Perforations allow remote thermographic inspection without the need to remove the shrouds. Possibility of sealing.

Mounting

For complete upstream and downstream protection of 4 pole products, please order quantity 2 ; for 2 pole products please order quantity 1.

Rating (A)	Position	Reference
$40 \ldots 160$	top / bottom	$22944016^{(1)}$

(1) Reference composed of 2 pieces.

Auxiliary contact

Use

A maximum of two auxiliary contact blocks can be fitted to each product. Each auxiliary contact block integrates $3 \mathrm{NO} / \mathrm{NC}$ auxiliary contacts (I, 0, II).
The ATyS d M is delivered as standard with 1 block with separate common points.

Rating (A)	Type	Reference
$40 \ldots 160$	Separate common points	13090001
$40 \ldots 160$	Linked common points	13090011

Sealable cover

Use
Prevents access to the ATyS t M and ATyS g M
configuration panels.

Rating (A)	No. of poles	Reference
$40 \ldots 160$	$2 P$	13592000
$40 \ldots 160$	$4 P$	13590000

ATyS M range ATyS d M, ATyS t M, ATyS g M, ATyS p M from 40 to 160 A

Polycarbonate enclosure

Use

Dedicated to the installation of a three-phase ATyS M, it enables easy integration of a compact transfer switch solution.

Rating (A)	$\mathbf{H} \times \mathbf{W} \times \mathbf{D}(\mathbf{m m})$	Reference
$40 \ldots 160$	$385 \times 385 \times 193$	13099006

Extension unit

Use

Combined with the polycarbonate enclosure, the extension unit provides additional space in order to connect $70 \mathrm{~mm}^{2}$ cables to the ATyS M with ease.

Rating (A)	Reference
$40 \ldots 160$	13099007

Residential enclosure

Use

Dedicated to the implementation of a single-phase ATyS M, the plastic enclosure provides a compact IP41 transfer switch solution with easy integration.

Rating (A)	$\mathbf{H} \times \mathbf{W} \times \mathbf{D}(\mathbf{m m})$	Reference
$40 \ldots 160$	$410 \times 305 \times 150$	13099056

Double power supply - DPS

Use
Allows an ATyS d M to be supplied by two 230 VAC 50/60 Hz networks. Input

- The input is considered as "active" from 200 VAC.
- Maximum voltage: 288 VAC.
- Internal protection: each input is fuse protected (3.15 A).
- Connection on terminals: max. $6 \mathrm{~mm}^{2}$.
- Modular product: the width of 4 modules.

ATyS M range
 ATyS d M, ATyS t M, ATyS g M, ATyS p M
 from 40 to 160 A

Accessories (continued)

Auto-transformer

Use
For use with ATyS M in 400 VAC three-phase applications that have no distributed neutral. The ATyS M includes integrated sensing and power supply circuits, therefore a neutral connection is required for 400 VAC three-phase applications. When no neutral connection is available this autotransformer ($400 / 230 \mathrm{VAC}, 400 \mathrm{VA}$) provides the 230 VAC required for the ATyS to function.

Rating (A)	Reference
$40 \ldots 160$	15994121

Remote interfaces for ATyS p M

Use
To remotely display source availability and position indication on the front of a panel when the ATyS M is enclosed.
The remote interface is powered directly from the ATyS M via the RJ45 connection cable. Maximum cable length: 3 m .

D10

To display source availability and position indication on the front panel of an enclosure.
Protection degree: IP21.

Description of accessories	Reference
D10	95992010
D20	95992020

D20

In addition to the functions of the D10, the D20 displays measurements and enables control and configuration from the front of the display panel.
Protection degree: IP21.

Door mounting

2 holes $\varnothing 22.5$.
ATyS M connection via RJ45 cable, not isolated.
Cable not provided.

Connecting cable for remote interfaces

Use
To connect between a remote interface (type D10 or D20) and a control product (ATyS p M).

Characteristics:

RJ45 8 wire straight-through, non isolated cable. Length 3 m.

Type	Length	Reference
RJ45 cable	3 m	15992009

Cage-terminal interface
 Use

The power connection terminals allow conversion of the cage clamp terminals into bolt-on type connection terminals, enabling connection of up to two $35 \mathrm{~mm}^{2}$ cables or one $70 \mathrm{~mm}^{2}$ cable. Compatible with aluminium terminals. Each power connection terminal is provided with separation screens.

Rating (A)	Reference
$40 \ldots 160$	$13994017^{(1)}$
(1) For complete conversion, order quantity 3.	

ATyS M range
 ATyS d M, ATyS t M, ATyS g M, ATyS p M from 40 to 160 A

Polycarbonate enclosed solution

General characteristics

- From 40 to 160 A.
- 230 VAC [176 VAC-288 VAC] 50 Hz network or 60 Hz [45 Hz-65 Hz]
- Protection degree: IP 55, IK08.
- Colour: RAL 7035.
- Material: transparent cover, enclosure base: polycarbonate.
- Mounting: 4 holes on the rear of the enclosure.
- Flame resistant to $650^{\circ} \mathrm{C}$.

References

ATyS d M single-phase model (2 P)

Rating (A)	Reference	
40	18232004	
63	18232006	
80	18232008	
100	18232010	
125	18232012	
160	18232016	
ATyS g M single-phase model (2 P)		
Rating (A)	Reference	110
40	18542004	-
63	18542006	4
80	18542008	
100	18542010	
125	18542012	
160	18542016	

Accessories

Customer fit

Description	Reference
Auxiliary contact	13090001
Voltage sensing and power supply tap (2 per reference)	13994006

For model ATyS d M only	Reference
Description	15993030
ATyS C30 relay driver	15993040
ATyS C40 relay driver	15994001
Dual power supply	

Dimensions

- Weight: 5.5 kg .
- Connection: recommended cable size (Cu): 25 to $70 \mathrm{~mm}^{2}$ according to rating (max. cable size: $70 \mathrm{~mm}^{2}$).

ATyS M range
 ATyS d M, ATyS t M, ATyS g M, ATyS p M
 from 40 to 160 A

Solutions with steel enclosure

General characteristics

- Adapted to mechanical risk and dust hazard.
- Integrated bridging bar.
- Protection degree: IP3x or IP54.
- Colour: RAL 7035.
- Cable gland plates: top and bottom.
- Material: 1.2 mm thick steel
- Coating: epoxy polyester powder.
- Mounting: 4 wall mounting brackets - not fitted.
- Door: hinged, cut-out $327.4 \times 47.6 \mathrm{~mm}$.
- Door lock: 3 mm double bar (key included).

References

ATyS d M models

Rating (A)	No. of poles	IP 3X Reference	IP 54 Reference
40	4 P	18234004	18234005
63	4 P	18234006	18234007
80	4 P	18234008	18234009
100	$4 P$	18234010	18234011
125	4 P	18234012	18234013
160	4 P	18234016	18234017

ATyS g M models

Rating (A)	No. of poles	IP 3X Reference $1854 ~ 4004$	IP 54 Reference 18544005
40	4 P	18544006	18544007
63	4 P	18544008	18544009
80	4 P	18544010	18544011
100	4 P	18544012	18544013
125	4 P	18544016	18544017
160	4 P		

ATyS p M + COM RS485 models

Rating (A)	No. of poles	IP 3X Reference	IP 54 Reference
40	$4 P$	18844004	18844005
63	$4 P$	18844006	18844007
80	$4 P$	18844008	18844009
100	$4 P$	18844010	18844011
125	$4 P$	18844012	18844013
160	$4 P$	18844016	18844017

Accessories

Customer fit	
Description	Reference
Solid neutral	13099008
IP54 kit	13994016

Dimensions

ATyS M range

Dimensions

Terminals and connections

Single-phase ATyS d M

Three-phase ATyS d M

ATyS M range

ATyS d M, ATyS t M, ATyS g M, ATyS p M
from 40 to 160 A

Terminals and connections (continued)
Three-phase ATyS t M

1 primary source (network)
2 backup source (network)

1: position 0 control
2: preferred source selection
3: automatic mode inhibition
6: availability S1 or S2

A: bridging bar (accessory)
B: auxiliary contact block - $1 \mathrm{NO} / \mathrm{NC}$
per position I, 0, II (accessory)

Single-phase ATyS g M

Three-phase ATyS g M

1 primary source

2 backup source
1: manual retransfer/priority change
2: test on load
3: automatic mode inhibition
6: relay for product availability
7: genset start / stop control

A: bridging bar (accessory)
B: auxiliary contact block - 1 NO/NC per position I, 0, II (accessory)

Three-phase ATyS p M

1 primary source

2 backup source
1-2-3: programmable inputs
4-5-6: programmable outputs
7: genset start / stop control
8: RJ45 for connecting a D10/D20 remote interface.
9: RS485 for communication on versions with COM.
A: bridging bar (accessory)
B: auxiliary contact block - 1 NO/NC per position I, 0, II (accessory)

Characteristics according to IEC 60947-3 and IEC 60947-6-1
40 to 160 A

Thermal current I_{th} at $40^{\circ} \mathrm{C}$	40 A	63 A	80 A	100 A	125 A	160 A
Rated insulation voltage $\mathrm{U}_{\mathrm{i}} \mathrm{M}$ (power circuit)	800	800	800	800	800	800
Rated impulse withstand voltage $\mathrm{U}_{\mathrm{imp}}(\mathrm{kV})$ (power circuit)	6	6	6	6	6	6
Rated insulation voltage $\mathrm{U}_{\mathrm{i}} \mathrm{N}$) (control circuit)	300	300	300	300	300	300
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}(\mathrm{kV}$) (control circuit) - ATyS d M	4	4	4	4	4	4
Rated impulse withstand voltage $\mathrm{U}_{\mathrm{imp}}(\mathrm{kV}$) (control circuit) - ATyS t M, g M and p M	2.5	2.5	2.5	2.5	2.5	2.5
Rated operational currents $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ according to IEC 60947-6-1						
Rated voltage Utilisation category	A/B ${ }^{(1)}$					
415 VAC AC-31 A/AC-31 B	40/40	63/63	80/80	100/100	100/125	100/160
415 VAC AC-32 A/AC-32 B	40/40	63/63	80/80	100/100	100/125	100/160
415 VAC AC-33 A / AC-33 B	-/40	-/63	-/80	-/100	-/125	-/125
Rated operational currents $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ according to IEC 60947-3						
Rated voltage Utilisation category	$\mathrm{A} / \mathrm{B}^{(1)}$	A/B ${ }^{(1)}$	A/B ${ }^{(1)}$	$A / B^{(1)}$	A/B ${ }^{(1)}$	A/B ${ }^{(1)}$
415 VAC AC-20 A/AC-20 B	40/40	63/63	80/80	100/100	125/125	160/160
415 VAC AC-21 A/AC-21 B	40/40	63/63	80/80	100/100	125/125	160/160
415 VAC AC-22 A/AC-22 B	40/40	63/63	80/80	100/100	125/125	160/160
415 VAC AC-23 A / AC-23 B	40/40	63/63	80/80	100/100	125/125	125/160
690 VAC AC-21 A/AC-21 B	40/40	63/63	80/80	100/100	125/125	160/160
690 VAC AC-22 A/AC-22 B	40/40	63/63	80/80	80/80	100/125	100/125
690 VAC AC-23 A/AC-23 B	40/40	63/63	63/63	80/80	80/80	80/80
Current rated as conditional short-circuit with fuse gG DIN						
Conditional short-circuit current (kA rms)	50	50	50	50	50	40
Associated fuse rating (A)	40	63	80	100	125	160

Current rated as conditional short-circuit with any brand of circuit breaker that ensures tripping in less than $0.3 \mathrm{~s}{ }^{(4)}$

Short-circuit operation (switch only)

Current rated as short-time withstand I_{cw} 1s $(\mathrm{kA} \mathrm{rms})^{(2)}$	4	4	4	4	4	4
Rated peak withstand current (kA peak) ${ }^{(2)}$	17	17	17	17	17	17
Connection						
Min. connection cross-section	10	10	10	10	10	10
Minimum Cu cable cross-section (mm^{2})	70	70	70	70	70	70
Tightening torque (Nm)	5	5	5	5	5	5
Switching time ${ }^{(5)}$						
$1-0$ or II-0, following a command (ms)	45	45	45	45	45	45
Transfer time I- II or II-I, following a command (ms)	180	180	180	180	180	180
I-O or II-0, after outage (s)	1.2	1.2	1.2	1.2	1.2	1.2
I-II or II-I transfer time, after outage (s)	1.4	1.4	1.4	1.4	1.4	1.4
Contact transfer time ("black-out") I-II min. (ms) ${ }^{(3)}$	150	150	150	150	150	150

Power supply

Min./max. supply (VAC) (ATyS d M, t M and g M)	176/288	176/288	176/288	176/288	176/288	176/288
Min./max. supply (VAC) (ATyS p M)	160/305	160/305	160/305	160/305	160/305	160/305

Control supply power demand

Rated power (VA)	6	6	6	6	6	6
Max. intensity at 230 VAC (A) - ATyS d M, t M and g M	30	30	30	30	30	30
Max. intensity at 230 VAC (A) - ATyS p M	20	20	20	20	20	20
Mechanical specifications						
Durability (number of operating cycles)	10,000	10,000	10,000	10,000	10,000	10,000
Weight of single-phase models - non-packaged (kg)	2.8	2.8	2.8	2.8	2.8	2.8
Weight of single-phase models - including packaging (kg)	3.5	3.5	3.5	3.5	3.5	3.5
Weight of three-phase models - non-packaged (kg)	3.5	3.5	3.5	3.5	3.5	3.5
Weight of three-phase models - including packaging (kg)	4.2	4.2	4.2	4.2	4.2	4.2

(1) Category with index $A=$ frequent operation / Category with index $B=$ infrequent operation (2) For a rated operational voltage $U_{e}=400 \mathrm{VAC}$.
(3) 5\% tolerance.
(4) Value for coordination with any circuit breaker that ensures tripping in less than 0.3 s . For coordination with specific circuit-breaker references, higher short-circuit current values are available. Please contact us.
(5) At rated voltage - excluding time delays, where applicable.

The ATyS S range: a robust solution

A range of transfer switches from 40 to 125 A

Three application types
Mains/Mains

The advantages

Safe and reliable

- An extended lifetime thanks to a switching principle based on stable positions.
- Positive break indication.
- Mechanical position interlocking.
- Stable power supply to the loads because the ATyS S does not require power supply for the position to be maintained.
- Various power supply voltages are available: 12 or $24 / 48$ VDC and 230 VAC or 2×230 VAC.

© 9

Easy to use

- Manual emergency control:

The product can be controlled quickly and safely using an emergency handle (motor installed or removed).

- Simple selection of the operating mode (Auto/Manual/Padlocked) using an integrated selector.

Total integration

- Integrated and tested solution: components factory assembled and wired.
- Reliable product: compliance with IEC 60947-6-1, the standard governing transfer switches.

Easy

maintenance

- Self-cleaning sliding contacts.
- Easy replacement of the motor unit, even during on load operation.

Cost-saving

- Low power consumption thanks to a switching principle based on stable positions: power is only required during transfer.
- Easy and fast installation: only four fixing points, three connectors and the power cables to connect.
- Shorter bridging bars that are consequently more economical than any other solution on the market.

Compact design

> Combining two switches mounted back-to-back and being only 197 mm wide, the ATyS S offers significant space saving when compared with a side-by-side solution.

Expert Services

Study, definition, advice, implementation, maintenance and training...
Our Expert Services team offers customised support to make your project a success.

ATyS S - ATyS d S

Remotely operated Transfer Switching Equipment from 40 to 125 A

Function

ATyS S products are 4 pole remotely operated transfer switches with positive break indication. They enable the on-load transfer of two three-phase supplies via remote volt-free contacts, from either an external automatic controller, using pulse logic, or a switch.
They are intended for use in low voltage power supply systems where a brief interruption of the load supply is acceptable during transfer.

Advantages

Extensive power supply range

The ATyS S is available in four supply versions, each with a broad range (+/-30\%).
The four versions are:

- 12 VDC power supply.
- 24/48 VDC power supply.
- 230 VAC single power supply.
- 2×230 VAC dual power supply

Safety and reliability

ATyS S products use stable position technology, ensuring constant pressure on the contacts and preventing premature faults In addition, they do not require a power supply to maintain position, thus protecting their loads from voltage fluctuations.

Easy integration

ATyS S products can be easily installed inside enclosures. Their design, and in particular their compact size, enables integration within most 200 mm deep enclosures.

Simplified maintenance

Maintenance can be carried out easily under load, with manual operation still available.
The control and motorisation section can be replaced simply by removing 4 screws, with no work required on the installation cabling.

The solution for

$>$ Genset < 90 kVA
$>$ Heating systems
$>$ Climate control
$>$ Ventilation systems
$>$ Telecommunications

Strong points

> Extensive power supply range
$>$ Safety and reliability
$>$ Easy integration
> Simplified maintenance
$>$ ATyS d S: Dual power supply

Conformity to standards

$>$ IEC 60947-6-1
$>$ IEC 60947-3
$>$ GB 14048-11

Approvals and certifications

ATyS S - ATyS d S

Remotely operated Transfer Switching Equipment
from 40 to 125 A

References

ATyS d S

Rating (A)	No. of poles	Power supply	ATyS d S	Bridging bars	Terminal shrouds	Voltage tap	Terminal retainer	DIN rail
40 A	4 P	2×230 VAC	95134004	$\begin{gathered} 4 \mathrm{P} \\ 95094013 \end{gathered}$	Source side	95994001	$\begin{gathered} 2 \text { pieces } \\ 95994003 \end{gathered}$	$\begin{aligned} & 4 \text { modules } \\ & 95994002 \end{aligned}$
63 A	4 P	2×230 VAC	95134006		2 pieces 95944012			
80 A	4 P	2×230 VAC	95134008					
100 A	4 P	2×230 VAC	95134010		Load side 2 pieces			
125 A	4 P	2×230 VAC	95134012		95949012			

ATyS S-ATySdS

Remotely operated Transfer Switching Equipment from 40 to 125 A

Accessories

Bridging bars

Use
For bridging power terminals on the top or bottom side of the switch.

Rating (A)	No. of poles	Reference
$40 \ldots 125$	4 P	95094013

Voltage tap

Use
Enables the required power supply for ATyS S 230 VAC and ATyS d S products to be tapped directly from the product's incoming power terminals. Can also be utilised in applications without neutral, to provide 400 VAC to the autotransformer.

Rating (A)	Reference
$40 \ldots 125$	95994001

95994001

Terminal retainer

Use
These clips have a dual function: - to prevent direct access to the power supply and control terminals and - to secure these connector terminals.

Rating (A)	Pack	Reference
$40 \ldots 125$	2 pieces	95994003

Terminal shrouds

Autotransformer 400/230 VAC
Use
For applications without neutral, this autotransformer provides the 230 VAC required to power these ATyS products.

Rating (A)	Reference
$40 \ldots 125$	95994004

DIN rail

Use

This 4-module DIN rail can be installed directly on the front of the ATyS S and can be utilised, for example, for the installation of a surge protection device.

Rating (A)	Reference
$40 \ldots 125$	95994002

Spares

Motorisation unit

Use
The motorisation module of the ATyS S can be easily replaced in case of problems, even when the load is supplied.

Rating (A)	ATyS S 12 VDC	ATyS S $\mathbf{2 4 / 4 8}$ VDC	ATyS S 230 VAC	ATyS d S 2x230 VAC
40	95055004	95065004	95035004	95135004
63	95055006	95065006	95035006	95135006
80	95055008	95065008	95035008	95135008
100	95055010	95065010	95035010	95135010
125	95055012	95065012	95035012	95135012

Switching unit

Use

References to be used for replacing the switching module of ATyS S products.

Rating (A)	Reference
40	95091004
63	95091006
80	95091008
100	95091010
125	95091012

Manual emergency operation handle

Use
This handle can be used on the product whether the motor unit is mounted or not.

Rating (A)	Reference
$40 \ldots 125$	95995012

Connector kit

Use

This kit, including all the connector types for the different products, can be ordered in case of loss or breaking of one connector.

Rating (A)	Reference
$40 \ldots 125$	95090002

ATyS S-ATySdS

Remotely operated Transfer Switching Equipment from 40 to 125 A

Enclosed solutions
General characteristics

ATyS S and ATyS d S

- Adapted to mechanical risk and dust hazard.
- Protection degree: IP3X (IP54 optional)
- Colour: RAL 7035, epoxy polyester powder.
- Wall mounting: 4 fixing lugs supplied loose.
- Connection of cables: top or bottom.
- Locking system: 3 mm double-bar Lock (key supplied)
- Power network 230/400 VAC +/-30\% $50 / 60 \mathrm{~Hz}$
- Two power supplies: 12 VDC and 2×230 VAC.
- Manual emergency operation handle provided with the enclosure.
- Bridging bars provided fitted on the product.

References			
Rating (A)	No. of poles	ATyS S $\mathbf{1 2}$ VDC	ATyS d S $\mathbf{2 \times 2 3 0}$ VAC
40	4 P	3505 4004	3513 4004
63	4 P	35054006	35134006
80	4 P	35054008	35134008
100	4 P	35054010	35134010
125	4 P	35054012	35134012

Accessories

Factory fitted

Description	Reference
LEDs indicating if voltage is present	95990005
LEDs for position indication	95990006
TESTS/AUTO modes selection (with C30 option)	95990007
Priority selection (with C30 option)	95990008
Surge arresters for enclosure (SURGYS D40)	95990010
Three-phase kit without neutral	95990012
Kit for auxiliary output (3Ph+N) 16A	95990016
Copper bar connection kit	95990019
IP54 kit	95990020
IPXXB protection screen (door open)	95990021
Battery charger	95990024
Kit for voltage sensing on terminals	95990028
Auxiliary kit for control on terminals	95990029
Kit for ATyS C30 control/command	95990030
Customer fit	
Description	Reference
Copper bar connection kit	95990018
IP54 kit	95990020
IPXXB protection screen (door open)	95990021

Dimensions

ATyS S - ATyS d S

Characteristics according to IEC 60947-3 and IEC 60947-6-1

40 to 125 A					
Thermal current $\mathrm{I}_{\text {th }}$ at $40^{\circ} \mathrm{C}$	40 A	63 A	80 A	100 A	125 A
Rated insulation voltage $\mathrm{U}_{\mathrm{i}} \mathrm{M}$ (power circuit)	800	800	800	800	800
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}(\mathrm{kV})$ (power circuit)	6	6	6	6	6
Rated insulation voltage $\mathrm{U}_{\mathrm{i}} \mathrm{N}$ ((operation circuit)	300	300	300	300	300
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$ (kV) (operation circuit)	4	4	4	4	4
Rated operational currents $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ according to IEC 60947-6-1					
Rated voltageUtilisation category	A/B	A/B	A/B	A/B	A/B
415 VAC AC-31 B	40	63	80	100	125
415 VAC AC-32 B	40	63	80	80	80
Rated operational currents $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ according to IEC 60947-3					
Rated voltage	A/B	A/B	A/B	A/B	A/B
415 VAC AC-20 A / AC-20 B	40/40	63/63	80/80	100/100	125/125
415 VAC AC-21 A / AC-21 B	40/40	63/63	80/80	100/100	100/125
415 VAC AC-22 A/AC-22 B	40/40	63/63	80/80	100/100	100/100
415 VAC AC-23 A / AC-23 B	-/40	-/63	-/63	-/63	-/63
Fuse protected short-circuit withstand (kA rms prospective)					
Prospective short-circuit current (kA rms)	50	50	50	25	15
Associated fuse rating (A)	40	63	80	100	125

Circuit breaker protected short-circuit withstand with any circuit breaker that ensures tripping in less than $0.3 \mathrm{~s}^{(3)}$

Rated short-time withstand current $0.3 \mathrm{~s} \mathrm{I}_{\text {cw }}$ (kA rms)	3.5	3.5	3.5	3.5	3.5
Short-circuit capacity as per IEC 60947-6-1					
Rated short-time withstand current 0.03 s . (kA)	5	5	5	5	-
Rated short-circuit making capacity I_{cm} (kA peak)	7.65	7.65	7.65	7.65	-

Short-circuit capacity as per IEC 60947-3 (without protection)
Rated short-time withstand current 1 s. I I (kA rms)
Rated peak withstand current (kA peak)
Connection
Maximum Cu cable cross-section (mm²)
Tightening torque mini / maxi (Nm)

Switching time (Standard setting)

| I- 0 or II- $0(\mathrm{~ms})$ | 500 | 500 | 500 | 500 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| I- II or II I(ms) | 1000 | 1000 | 1000 | 1000 |
| Duration of "electrical blackout" I-II(ms) minimum | 500 | 500 | 500 | 500 |

Power supply

Power supply 12 VDC \min / \max (VDC)	$9 / 15$	$9 / 15$	$9 / 15$	$9 / 15$	$9 / 15$
Power supply 24/48 VDC min / max (VDC)	$17 / 62$	$17 / 62$	$17 / 62$	$17 / 62$	$17 / 62$
Power supply 230 VAC $\min / \max (V A C)$	$160 / 310$	$160 / 310$	$160 / 310$	$160 / 310$	$160 / 310$

Control supply power demand

Power supply 12 VDC inrush / nominal (VA)	200/40	200/40	200/40	200/40	200/40
Power supply 24/48 VDC inrush / nominal (VA)	200/40	200/40	200/40	200/40	200/40
Supply 230 VAC inrush / nominal (VA)	200/40	200/40	200/40	200/40	200/40
Mechanical characteristics					
Durability (number of operating cycles)	25000	25000	25000	25000	25000
Weight ATyS S and ATyS d S 4 P (kg)	3	3	3	3	3

(1) Value for coordination with any circuit breaker that ensures tripping in less than 0.3 s . For coordination with specific circuit-breaker references, higher short-circuit current values are available. Please consult us.

ATyS S-ATySdS

Remotely operated Transfer Switching Equipment
from 40 to 125 A

Terminals and connections
ATyS S DC version

1 preferred source
2 altemate source
1: position 0 control
2: position I control
3: position |l control
4: auxiliary contact, closed when the switch is in position 0
5: auxiliary contact, closed when the switch is in position II 6: auxiliary contact, closed when the switch is in position I 7 : power supply 12 VDC ($9-15$ VDC) or 24 VDC / 48 VDC (17-62 VDC) depending on the version.

ATyS S: 230 VAC

1 preferred source
2 alternate source
1: position 0 control
2: position I control
3: position II control
4: auxiliary contact, closed when the switch is in position 0
5: auxiliary contact, closed when the switch is in position II
6: auxiliary contact, closed when the switch is in position I
7: power supply kit: 230 VAC (160-310 VAC)

ATyS d S: 2×230 VAC

1 preferred source
2 alternate source
1: position 0 control
2: position I control
3: position II control
4: auxiliary contact, closed when the switch is in position 0
5: auxiliary contact, closed when the switch is in position II
6: auxiliary contact, closed when the switch is in position I
7: power supply kit l: 230 VAC (160-310 VAC)
8 : power supply kit ll: 230 VAC (160-310 VAC)

Dimensions

Connection terminal

The ATyS range: intuitive, reliable and robust solutions

A complete range of automatic and remotely operated transfer switches from 125 to 3200 A

To meet the increasing demands of its users, the ATyS range is constantly evolving to offer new functions. Five product versions are available to find the right solution perfectly adapted to your application.

The advantages

0
 Safe
 operation

- Permanent indication of product availability (Watchdog relay).
- Positive break indication.
- Mechanical position interlocking.
- Padlocked mode to secure maintenance operations (lockout).
- Secure access to the product configuration.

Robust integrated

 solution
A single product with all the functions:

- Integrated and tested solution: components factory assembled and wired.
- Greater reliability: compliance with IEC 60947-6-1, the standard governing transfer switches.

Proven SOCOMEC technology:

- Combination of two "back-to-back" (load break switch) PC class switches.
- Switching based on stable positions guaranteeing constant pressure on the contacts at all times.
- SIRCO contact technology used in numerous products for over 40 years.

Intuitive

use

- Manual emergency control: The product can be controlled quickly and safely using an emergency handle (motor installed or removed).
- User friendly selection of the operating mode (Auto/Manual) using an integrated selector.

Improved on load characteristics

IEC 60947-6-1/GB 14048-11

- AC 31B - up to 3200 A
- AC 32B - up to 2000 A
- AC 33B - up to 1250 A

IEC 60947-3

- AC 23B - up to 1250 A

Rapid

commissioning

- ATyS and ATyS d: no configuration required.
- ATyS t and ATyS g: configuration in just a few minutes using a screwdriver.
- ATyS p: simplified configuration (EASY CONFIG software and LCD display on the device).
- ATyS $\mathrm{t}, \mathrm{g}, \mathrm{p}$: auto-configuration of the network parameters.

Easy
maintenance

- Self-cleaning sliding contacts.
- Easy replacement of the motor and the electronic unit, even on-load.

Expert Services

Study, definition, advice, implementation, maintenance and training...
$>$ Our Expert Services team offers customised support to make your project a success.

ATyS r-ATyS d
Remotely operated Transfer Switching Equipment from 125 to 3200 A

Function
ATyS r and ATyS d are 3 or 4 pole remotely operated motorised transfer switches with positive break indication.
They enable the on-load transfer of two three-phase power supplies via remote volt-free contacts, from either an external automatic controller, using pulse logic, or a switch.
They are intended for use in low voltage power systems where interruption of the load supply is acceptable during transfer.

Advantages

Watchdog relay to check product availability

ATyS r and ATyS d products are equipped with a Watchdog relay which constantly monitors your product, thereby securing the installation.
This relay informs in real time the user of the product's availability, i.e. whether it is operational and ready for source switching.

Integrated auxiliary contacts

As part of the product monitoring function, the ATyS r and ATyS d enable the transmission of information relating to their position. This is possible thanks to the standard integration of an auxiliary contact for each position.

Extended power supply range

ATyS r and ATyS d products offer greater availability thanks to their extensive power supply range of 208 to 277 VAC $\pm 20 \%$.

ATyS d: integrated dual power supply In addition to the functions offered by the ATyS r, the ATyS d incorporates supply redundancy without the need for additional wiring. This is obtained by integrating a double supply (2 independent power supplies) directly within the product.

The solution for

> Applications with an external ATS/AMF controller Building Management Systems (BMS)

Strong points

$>$ Watchdog relay to check product availability
> Integrated auxiliary contacts
$>$ Extended power supply range
> ATyS d: integrated dual power supply

Conformity to standards

$>$ IEC 60947-6-1
$>$ IEC 60947-3
$>$ GB 14048.11

External automatic controller

$>$ The ATyS r and ATyS d are compatible with our ATyS C30 external controllers (for mains/mains and mains/ genset applications) and ATyS C40 controllers (for genset/genset applications).

References
ATyS r-ATyS d

(1) See "Copper bar connection pieces" page 69.
(2) To fully shroud front, rear, top and bottom 4 references required.

To shroud front switch top and bottom 2 references required.
(3) Factory mounting only.

Technical information

$>$ Accessories: see page 68.
$>$ Characteristics: see page 76.
$>$ Terminals and connections: see page 78.
$>$ Dimensions: see page 80.

ATyS $t-A T y S g$
 Automatic transfer switching equipment from 125 to 3200 A

Strong points

> Rapid commissioning
$>$ ATyS d with integrated controller for functions dedicated to mains/mains or mains/genset applications

Conformity to standards

$>$ IEC 60947-6-1
$>$ IEC 60947-3
$>$ GB 14048.11
ATyS t and ATyS g are 3 or 4 pole automatic transfer switches, with positive break indication. They incorporate all the functions offered by the ATyS d, as well as functions intended for mains/mains applications (ATyS t) and mains/genset applications (ATyS g).
In automatic mode they enable the monitoring of, and the onload changeover between, two power supply sources, in accordance with the parameters configured via two potentiometers and four DIP switches.
They are intended for use in low voltage power supply systems where a brief interruption of the load supply is acceptable during transfer.

Advantages

Rapid commissioning

ATyS t and g switches offer significant time saving during commissioning (process takes 2 to 3 minutes). Owing to the design that allows commissioning through just two potentiometers (4 on the ATyS g) and four DIP switches, a screwdriver is all that is required to configure the parameters.
For added simplicity, they also offer an autoconfiguration function which enables automatic adjustment of the rated voltage and frequency.

ATyS t: specifically designed for mains/

 mains applicationsThe ATyS t's integrated controller has been designed to provide only the functions required for these applications (operation with or without priority, preferred source selection) together with the monitoring of the voltage and frequency of both sources, for threephase and single-phase networks.

ATyS g: specifically designed for mains/ genset applications
The ATyS g's integrated controller has been designed to provide specific functions for these applications (genset startup, on-load or off-load tests...) together with the monitoring of the voltage and frequency of both sources for three-phase and single-phase networks. The generator supply must be connected to switch II, located at the rear.

References
ATyS t - ATyS g

Rating (A) / Frame size	No. of poles	ATyS	ATyS g	Bridging bars	Voltage sensing and power supply tap	Terminal shrouds	Terminal screens	Auxiliary contact
125 A / B3	3 P	95433012	95533012	$\begin{gathered} 3 P \\ 41093019 \\ 4 P \\ 41094019 \end{gathered}$	$\begin{gathered} 3 P \\ 15593012 \\ 4 \mathrm{P} \\ 15594012^{(1)} \end{gathered}$	$\begin{gathered} 3 P \\ 26943014^{(2)} \\ 4 P \\ 26944014^{(2)} \end{gathered}$	$\begin{gathered} 3 P \\ 15093012 \\ 4 \mathrm{P} \\ 15094012 \end{gathered}$	15990502
	4 P	95434012	95534012					
160 A / B3	3 P	95433016	95533016					
	4 P	95434016	95534016					
200 A / B3	3 P	95433020	95533020					
	4 P	95434020	95534020					
250 A / B4	$3 P$	95433025	95533025	$\begin{gathered} 3 \mathrm{P} \\ 41093025 \\ 4 \mathrm{P} \\ 41094025 \end{gathered}$	$\begin{gathered} 3 P \\ 15593025 \\ 4 \mathrm{P} \\ 15594025 \end{gathered}$	$\begin{gathered} 3 P \\ 26943021^{(2)} \\ 4 \mathrm{P} \\ 26944021^{(2)} \end{gathered}$	$\begin{gathered} 3 P \\ 15093025 \\ 4 \mathrm{P} \\ 15094025 \end{gathered}$	
	4 P	95434025	95534025					
315 A/B4	3 P	95433031	95533031	$\begin{gathered} 3 P \\ 41093039 \\ 4 \mathrm{P} \\ 41094039 \end{gathered}$				
	4 P	95434031	95534031					
$400 \mathrm{~A} / \mathrm{B4}$	$3 P$	95433040	95533040		$\begin{gathered} 3 P \\ 15593040 \end{gathered}$			
	4 P	95434040	95534040		$\begin{gathered} 4 \mathrm{P} \\ 15594040 \end{gathered}$			
$500 \mathrm{~A} / \mathrm{B} 5$	$3 P$	95433050	95533050	$\begin{gathered} 3 P \\ 41093050 \\ 4 P \\ 41094050 \end{gathered}$	$\begin{gathered} 3 P \\ 15593063 \\ 4 P \\ 15594063 \end{gathered}$	$\begin{gathered} 3 P \\ 26943051^{(2)} \\ 4 P \\ 26944051^{(2)} \end{gathered}$	$\begin{gathered} 3 P \\ 15093063 \\ 4 \mathrm{P} \\ 15094063 \end{gathered}$	
	4 P	95434050	95534050					
630 A / B5	$3 P$	95433063	95533063	$\begin{gathered} 3 P \\ 41093063 \\ 4 \mathrm{P} \\ 41094063 \end{gathered}$				
	4 P	95434063	95534063					
800 A / B6	$3 P$	95433080	95533080	$\begin{gathered} 3 P \\ 41093080 \\ 4 \mathrm{P} \\ 41094080 \end{gathered}$	$\begin{gathered} 3 P \\ 15593080 \\ 4 \mathrm{P} \\ 15594080 \end{gathered}$		$\begin{gathered} 3 P \\ 15093080 \\ 4 \mathrm{P} \\ 15094080 \end{gathered}$	15990532
	4 P	95434080	95534080					
1000 A / B6	$3 P$	95433100	95533100					
	4 P	95434100	95534100					
1250 A / B6	$3 P$	95433120	95533120	$\begin{gathered} 3 P \\ 41093120 \end{gathered}$	$\begin{gathered} 3 P \\ 15593120 \end{gathered}$			
	4 P	95434120	95534120	$\begin{gathered} 4 \mathrm{P} \\ 41094120 \end{gathered}$	$\begin{gathered} 4 \mathrm{P} \\ 15594120 \end{gathered}$			
1600 A / B7	$3 P$	95433160	95533160	$\begin{gathered} 3 P \\ 41093160 \\ 4 \mathrm{P} \\ 41094160 \end{gathered}$	$\begin{gathered} 3 P \\ 15593160 \\ 4 \mathrm{P} \\ 15594160 \end{gathered}$		$\begin{gathered} 3 P \\ 15093160 \\ 4 \mathrm{P} \\ 15094160 \end{gathered}$	
	4 P	95434160	95534160					
2000 A / B8	$3 P$	95433200	95533200	(1)	$\begin{gathered} 3 P \\ 15593200 \\ 4 \mathrm{P} \\ 15594200 \end{gathered}$		$\begin{gathered} 3 P \\ 15093200 \\ 4 \mathrm{P} \\ 15094200 \end{gathered}$	d'origine
	4 P	95434200	95534200					
2500 A / B8	$3 P$	95433250	95533250					
	4 P	95434250	95534250					
3200 A / B8	3 P	95433320	95533320					
	4 P	95434320	95534320					

(1) See "Copper bar connection pieces" page 69.
(2) To fully shroud front, rear, top and bottom 4 references required.

To shroud front switch top and bottom 2 references required.

Technical information

$>$ Accessories: see page 68.
$>$ Characteristics: see page 76.
$>$ Terminals and connections: see page 78.
$>$ Dimensions: see page 80.

Function

ATyS p are 3 or 4 pole automatic transfer switches with positive break indication. They incorporate all the functions offered by the ATyS t and g, as well as functions designed for power management and communication.
In automatic mode they enable the monitoring of, and the on-load changeover between, two power supply sources, in accordance with the parameters configured through LCD display, or via communication.
They are intended for use in low voltage power supply systems where a brief interruption of the load supply is acceptable during transfer.

Advantages

Recording of events

ATyS p switches enable effective monitoring of your installation thanks to timestamped event recording.
Events can be retrieved and read via communication.

Optional communication modules

The ATyS p offers communication functions through the addition of optional modules, such as RS485 Modbus or Ethernet with embedded Webserver.

Configuration software

Software (Easyconfig) is available enabling the ATyS p parameters to be easily configured and the existing configuration to be saved and sent to other units.

Power measurements

ATyS p products are particularly suited to energy management and monitoring. In addition to their integrated power and energy measurement functions (with a 2\% accuracy level), programmable inputs/outputs can be utilised to control load shedding based on a load level or tariff.

Possibility to set periodic genset startup

ATyS p switches offer additional functions for maintenance. They include a programmable genset starting function which allows the starting dates and operating times to be configured.

The solution for

$>$ Applications requiring power management and communication.

Strong points

Optional communication modules
$>$ Recording of events
> Configuration software
> Power measurements
> Possibility to set periodic genset startup

Conformity to standards

$>$ IEC 60947-6-1
$>$ IEC 60947-3
$>$ GB 14048.11

Webserver

The Webserver function comprises HTML pages embedded in the Ethernet communication module.
These pages can be accessed via an internet browser, simply by entering the IP address.
The webserver offers the following functionalities:
$>$ Display of source status and switch position
$>$ Display of the main measurements
$>$ Extraction of the latest logged events
$>$ Display of the product configuration

Front panel

1. Slots for optional plug-in modules.
2. Backlit LCD display.
3. Source availability and position indication LEDs.
4. Pushbuttons for programming and mode selection.

Communication and configuration

Easyconfig
Easyconfig software is the ideal solution to save time and simplify complex configuration.

Allows configuration of the following parameters:

- application type,
- voltage/frequency thresholds,
- timers,
- inputs/outputs...

Webserver

Thanks to optional modules, ATyS p can communicate in Modbus and Ethernet protocols.
The Ethernet communication module includes the Webserver function for access to the ATySp via an internet browser.

The Webserver function enables:

- display of source status and switch position,
- display of voltage measurements,
- display of parameters,
- access to the list of logged events.

ATyS p

Automatic Transfer Switching Equipment
from 125 to 3200 A

References
ATys p

[^5]
ATyS p

(1) Factory mounting only.

ATyS range
 ATyS r, ATyS d, ATyS t, ATyS g, ATyS p
 from 125 to 3200 A

Accessories

Terminal shrouds

Use
IP2X protection against direct contact with
terminals or connecting parts.

Advantages

Perforations allow remote thermographic inspection without the need to remove the shrouds.

(1) For complete shrouding at front, rear, top and bottom, order quantity 4; if equipped with bridging bars order quantity 3 . 2) For top and bottom shrouding for the front only, order quantity 2.

Terminal screens

Use
Upstream and downstream protection against direct contact with terminals or connection parts.

For upstream and downstream protection, order quantity 1.

Rating (A)	Frame size	No. of poles	Position	Reference
125... 200	B3	3 P	top / bottom	15093012
125... 200	B3	4 P	top / bottom	15094012
$250 . . .400$	B4	$3 P$	top / bottom	15093025
$250 . . .400$	B4	4 P	top / bottom	15094025
$500 \ldots 630$	B5	$3 P$	top / bottom	15093063
$500 . . .630$	B5	4 P	top / bottom	15094063
$800 . . .1250$	B6	$3 P$	top / bottom	15093080
$800 . . .1250$	B6	4 P	top / bottom	15094080
1600	B7	3 P	top / bottom	15093160
1600	B7	4 P	top / bottom	15094160
2000 ... 3200	B8	3 P	top / bottom	15093200
2000 ... 3200	B8	4 P	top / bottom	15094200

Bridging bars

Use

For bridging power terminals on the upstream or downstream side of the switch. One reference required per ATyS.

Rating (A)	Frame size	No. of poles	Section (mm)	Reference
$125 \ldots 200$	B3	$3 P$	20×2.5	41093019
$125 \ldots 200$	B3	4 P	20×2.5	41094019
250	B4	$3 P$	25×2.5	41093025
250	B4	4 P	25×2.5	41094025
$315 \ldots 400$	B4	$3 P$	32×5	41093039
$315 \ldots 400$	B4	4 P	32×5	41094039
500	B5	$3 P$	32×5	41093050
500	B5	4 P	32×5	41094050
630	B5	$3 P$	50×5	41093063
630	B5	4 P	50×5	41094063
$800 \ldots 1000$	B6	$3 P$	50×6	41093080
$800 \ldots 1000$	B6	$4 P$	50×6	41094080
1250	B6	$3 P$	60×8	41093120
1250	B6	$4 P$	60×8	41094120
1600	B7	$3 P$	90×10	41093160
1600	B7	$4 P$	90×10	41094160

Copper bar connection pieces

Use

For ratings 2000 to 3200 A.
Enables:

- Flat connection: the connection pieces provide a link between the two power terminals of the same pole (Fig. 1).
- Edgewise connection: the connection pieces provide a link between the two power terminals of the same pole and an edgewise bar connection terminal.
- Top or bottom bridging between two poles (Fig. 3).

Connection: the quantities given in the below table refer to the number of pieces required per pole, top or bottom.
Bridging connection: the quantities given refer to the number of pieces required to complete a single bridging connection between two poles.

	Reference	2000-2500 A			3200 A		
		Fig. 1	Fig. 2	Fig. 3	Fig. 1	Fig. 2	Fig. 3
		Connection		Bridging connection I- II	Connection		Bridging connection I- II
		Flat	Edgewise		Flat	Edgewise	
Connection - part A	26191200	1	1	$2^{(2)}$	included	included	included
Bolt kit 35 mm - part B	26991201	$1^{(1)}$		$2^{(2)}$	$1^{(1)}$		$2^{(2)}$
Bolt kit 45 mm - part B	26991200	$1^{(1)}$			$1^{(1)}$		
T + Bolt kit - part C	26291200		1	1		1	1
Bracket + bolt kit - part D	26391200		1			1	
Bar + bolt kit - part E	41090320			1			1

(1) Choose the bolt length according to the thickness of the bars being connected; if bar thickness is greater than 20 mm , 45 mm bolts are required.
(2) For bridging connections, quantity 2 pieces are required for creating the link between the two power terminals of the same pole for switch bodies I and II.

Once installed, the power terminal is connection ready.

For 3200 A rating, connection pieces (part A) are supplied as standard. Bolt sets must be ordered separately.

The quantities of the applicable pieces then need to be multiplied by the number of connection points (power terminals) in order to determine the total quantity required of each part. Example: For a 4 pole 2500 A SIRCOVER with upstream edgewise connection (Fig. 2) and downstream bridging (Fig. 3), the following quantities will be required:

Part	Upstream edgewise quantity	Downstream bridging quantity	Total quantity
A	8	8	16
B	0	8	8
C	8	4	12
D	8	0	8
E	0	4	4

Fig. 1

(1) Single pole connection: 1 pole (top or bottom) comprises two power terminals which are to be linked with the copper connection kit.

Fig. 2

Fig. 3

Solid neutral

Use

The solid neutral kit provides connection
between the incoming and outgoing neutrals with no disconnection during transfer.

Rating (A)	Frame size	Reference
$125 \ldots 200$	B3	95090012
$200 \ldots 315$	B4	95090025
400	B4	95090040
$500 \ldots 630$	B5	95090063
$800 \ldots 1000$	B6	95090080
1250	B6	95090120
1600	B7	95090160

ATyS range

ATyS r, ATyS d, ATyS t, ATyS g, ATyS p
from 125 to 3200 A

Accessories (continued)

Autotransformer

Use
For applications without neutral, this autotransformer provides the

| Rating (A) Frame size | Reference |
| :--- | :--- | :--- | 230 VAC required to power these ATyS products.

DC power supply
Use Allows an ATyS to be supplied from a 12 or 24 VDC source. To be (1) positioned as close as possible to the DC power supply source.

Voltage tapping and power supply kit

Use

For power supply and voltage measurement (4 wire, three-phase) for the ATyS t, g and p. Routing of the conductors is controlled, which means that no specific protective device is necessary for these connections.

The kit can be fitted on the top or bottom of the switch.
Note: the 3-pole version does not integrate the power supply.

For ATyS t, g and ATyS p-3 pole

Rating (A)	Frame size	Reference
$125 \ldots 200$	B3	15593012
250	B4	15593025
$315 \ldots 400$	B4	15593040
$500 \ldots 630$	B5	15593063
$800 \ldots 1000$	B6	15593080
1250	B6	15593120
1600	B7	15593160
$2000 \ldots 3200$	B8	15593200

| For ATyS \mathbf{t}, \mathbf{g} and ATyS $\mathbf{p - 4}$ pole | | |
| :--- | :---: | :---: | :---: |
| Rating (A) | Frame size | Reference |
| $125 \ldots 200$ | B3 | 15594012 |
| 250 | B4 | 15594025 |
| $315 \ldots 400$ | B4 | 15594040 |
| $500 \ldots 630$ | B5 | 15594063 |
| $800 \ldots 1000$ | B6 | 15594080 |
| 1250 | B6 | 15594120 |
| 1600 | B7 | 15594160 |
| $2000 \ldots 3200$ | B8 | 15594200 |

125 to 630 A kit

800 to 3200 A kit

Voltage relay

Use

The DS is a voltage relay for monitoring a single power supply.

If it detects a fault in the source, the default relay contact closes.

DS
Reference
192X 0056

Door protective surround

Use

Door surround to provide a clean and safe finish to the panel's cut-out.

For ATyS		
Rating (A)	Frame size	Reference
$125 \ldots 630$	B3 \ldots B5	15290012
$800 \ldots 3200$	B6 ... B8	15290080
For ATyS d, \mathbf{t}, \mathbf{g} and \mathbf{p}		
Rating (A)		
$125 \ldots 630$	Frame size	Reference
$800 \ldots 3200$	B3 \ldots B5	15390012

Auxiliary contact

Use
Pre-break and signalling of positions I and II: each reference provides $1 \mathrm{NO} / \mathrm{NC}$ auxiliary contact for positions I and II. Possibility to install up to 2 auxiliary contacts for each position.

			Operating current $\mathrm{I}_{\mathrm{e}}(\mathbf{A})$			
		Nominal	$\mathbf{2 5 0}$ VAC	$\mathbf{4 0 0}$ VAC	$\mathbf{2 4}$ VDC	$\mathbf{4 8}$ VDC
Rating (A)	Frame size	current (A) chC-13	AC-13	DC-13	DC-13	
$125 \ldots 3200$	B3 \ldots B8	16	12	8	14	6

Rating (A)	Frame size	Type of mounting	Reference
$125 \ldots 630$	B3 \ldots B5	Customer fit	15990502
$800 \ldots 1600$	B6 \ldots B7	Customer fit	15990532
$2000 \ldots 3200$	B8	-	2AC per opsition fitted as standard

Low level AC: contact us. ATyS are supplied with 1 NO aux contact for all three positions as standard.

800 to 1600 A

If additional auxiliary contacts are required please consult us.

Mounting spacers

Use
Increases the distance between the rear power terminals and the backplate by 1 cm .

This accessory may also be used to replace the original mounting spacers.

Rating (A)	Frame size	Description of accessories	Reference

3 position padlocking (I-0-II)

Use
Enables the product to be padlocked in positions 0, I and II (factory fitted).

Rating (A)	Frame size	Reference
$125 \ldots 630$	B3 \ldots B5	95990003
$800 \ldots 3200$	B6 ... B8	95990004

Key handle interlocking system

Use
With the product in manual mode, it enables locking in position 0 using a RONIS EL11AP lock (factory fitted).

As standard, locking in position 0.
With the 3 position padlocking accessory:
key interlocking in I, 0 \& II.

Rating (A)	Frame size	Reference
$125 \ldots 630$	B3 \ldots B5	95991006
$800 \ldots 3200$	B6 ... B8	95991004

ATyS range
 ATyS r, ATyS d, ATyS t, ATyS g, ATyS p
 from 125 to 3200 A

Accessories (continued)

Current transformer

Use - for ATyS p only
Used with ATyS p units, these current transformers enable information to be obtained on the load current.

References

See our general catalogue or our website: www.socomec.com.

Plug-in optional modules

Use - for ATyS p only

Number of modules per device
A maximum of four modules can be fitted to each ATyS p, unless you are using either Ethernet communication module. In this case, you can connect up to 2 modules as well as the Ethernet communication module.

Remote interfaces

Use
To remotely display source availability and position indication typically used on the front of a panel when the product is enclosed.
Interfaces are powered from the ATyS transfer switch via the RJ45 connection cable.
Maximum cable length: 3 m .
D10 - for ATyS d, ATyS t and ATyS g
To display source availability and position indication on the front panel of an enclosure. Protection degree: IP21

D20 - for ATyS p

In addition to the functions of the D10, the D20 displays measurements and enables control and configuration from the front of a panel.
Protection degree: IP21

Door mounting

2 holes \varnothing 22.5.
ATyS transfer switch via RJ45 cable, not isolated. Cable available as an accessory.

Description of accessories	Reference
D10	95992010
D20	95992020

Connecting cable for remote interfaces

Use

To connect between a remote interface (type D10 or D20) and a control product (ATyS d, t, g or p).

Characteristics

RJ45 8 straight-through, non insulated cables, length 3 m .

For ATyS $\mathbf{d}, \mathbf{t}, \mathbf{g}$ and \mathbf{p}		
Type	Length	Reference
RJ45 cable	3 m	15992009

Sealable cover

Use - for ATyS t and g

Prevents access to the configuration of ATyS t and g devices (seals supplied).

Rating (A)	Frame size	Reference
$125 \ldots 3200$	B3 \ldots B8	95990000

Auto/Manual key selector
Use
Replaces the standard Auto/Manual selector knob with a key selector.

Rating (A)	Frame size	Reference
$125 \ldots 3200$	B3 \ldots B8	95991007

Double power supply - DPS

Use
Allows an ATyS r to be supplied by two 230 VAC, $50 / 60 \mathrm{~Hz}$ networks. Input

- The input is considered "active" from 200 VAC.
- Maximum voltage: 288 VAC.
- Internal protection: each input is fuse protected (3.15 A).
- Connection on terminals: max. $6 \mathrm{~mm}^{2}$.
- Modular device: 4 module width.

Description of accessories	Reference
DPS	15994001


```
ATyS range
ATyS \(r\), ATyS d, ATyS t, ATyS g, ATyS \(p\)
from 125 to 3200 A
```


Spares

ATyS p front panel
This front panel is used, for the ATyS p only, if source 2 is connected to unit I and source 1 is connected to unit II. Positions I and II are reversed on the front panel.

Product model	Reference
ATyS p	95991008

Electronic module

The electrical components of the ATyS d, t , g and p are easy to replace in case there is a problem, even when on-load.

Product model	Reference
ATyS d	95392001
ATyS t	95492001
ATyS g	95592001
ATyS p	95792001

Motorisation module

The motor units of the ATyS r, d, t, g and p re easy to replace in case there is a problem, even when on-load.

Rating (A)	Reference
$125 \ldots 200$	95095020
$250 \ldots 400$	95095040
$500 \ldots 630$	95095063
$800 \ldots 1250$	95095120
1600	95095160
$2000 \ldots 3200$	95095320

Switching module

If you need to replace just the switching part on an ATyS r, d, t, g or p order SIRCOVER items.
Please refer to page 18.

Enclosed solutions

General characteristics

ATyS d and ATyS p

- Adapted to mechanical risk and dust hazard.
- IP rating: IP54.
- Colour: RAL 7035.
- Connecting the cables: upstream or downstream up to 250 A then downstream only.
- The auxiliary contacts are wired to terminal blocks.
- Material: 2 mm-thick XC steel.
- Coating: epoxy varnish.
- Mounting: 4 wall mounting brackets, not mounted ≤ 400 A, floor standing feet >630 A
- Door: solid with hinges.
- Door lock: 3 mm double-bar lock (key included)

Rating (A)	No. of poles	ATyS d Reference	ATyS p Reference
125	$4 P$	17234012	17634012
160	$4 P$	17234016	17634016
250	$4 P$	17234025	17634025
400	$4 P$	17234040	17634040
630	$4 P$	17234063	17634063
800	$4 P$	17234080	17634080
1000	$4 P$	17234100	17634100
1250	$4 P$	17234120	17634120
1600	$4 P$	17234160	17634160
2000	$4 P 0$	17234200	17634200
3200	$4 P$	17234250	17634250
	$4 P$	17234320	17634320

Dimensions

(1) Wall mounting brackets supplied up to 400 A .
(2) Floor standing feet from 630 A (add 200 mm for to H dimension feet). (3) D10 or D20 interfaces (optional).

Rating (A)	Max. Cu cable cross-section (mm^{2})	H (mm)	W (mm)	D (mm)	M (mm)	N (mm)	Z1 (mm)	Z2 (mm)	Weight (kg)
125	50	650	400	300	448	608	38	134	25
160	70	650	400	300	448	608	38	134	25
250	120	1000	650	475	698	958	39.5	134.5	45
400	240	1000	650	475	698	958	39.5	134.5	50
630	2×185	1000	650	475			53	190	70
800	2×240	1200	800	660			66.5	253.5	135
1000	4×150	1200	800	660			66.5	253.5	140
1250	4×185	1600	1000	830			66.5	253.5	270
1600	4×240	1600	1000	830			67.5	253.5	375
2000	8×150	2000	1000	1000					400
2500	8×185	2000	1000	1000					400
3200	8×240	2000	1000	1000					400

ATyS range
ATyS r, ATyS d, ATyS t, ATyS g, ATyS p
from 125 to 3200 A

Characteristics according to IEC 60947-3 and IEC 60947-6-1
125 to 630 A

Thermal current $\mathrm{I}_{\text {th }}$ to $40^{\circ} \mathrm{C}$		125 A	160 A	200 A	250 A	315 A	400 A	500 A	630 A
Frame size		B3	B3	B3	B4	B4	B4	B5	B5
Rated insulation voltage $\mathrm{U}_{\mathrm{i}} \mathrm{M}$ ((power circuit)		800	800	800	1000	1000	1000	1000	1000
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$ (kV) (power circuit)		8	8	8	12	12	12	12	12
Rated insulation voltage $\mathrm{U}_{\mathrm{i}}(\mathrm{V})$ (control circuit)		300	300	300	300	300	300	300	300
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}(\mathrm{kV}$) (control circuit)		4	4	4	4	4	4	4	4
Rated operational currents $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ according to IEC 60947-3									
Rated voltage	Utilisation category	A/B ${ }^{(1)}$							
415 VAC	AC-21 A / AC-21 B	125/125	160/160	200/200	250/250	315/315	400/400	500/500	630/630
415 VAC	AC-22 A/AC-22 B	125/125	160/160	200/200	250/250	315/315	400/400	500/500	630/630
415 VAC	AC-23 A/ AC-23 B	125/125	160/160	200/200	200/200	315/315	400/400	500/500	500/630
500 VAC	AC-21 A/AC-21 B	125/125	160/160	200/200	250/250	315/315	400/400	500/500	630/630
500 VAC	AC-22 A / AC-22 B	125/125	160/160	200/200	200/250	200/315	200/400	500/500	500/500
500 VAC	AC-23 A / AC-23 B	80/80	80/80	80/80	200/200	200/200	200/200	400/400	400/400
$690 \mathrm{VAC}^{(3)}$	AC-21 A/AC-21 B	125/125	160/160	200/200	200/200	200/200	200/200	500/500	500/500
$690 \mathrm{VAC}^{(3)}$	AC-22 A/AC-22 B	125/125	125/125	125/125	160/160	160/160	160/160	400/400	400/400
$690 \mathrm{VAC}^{(3)}$	AC-23 A/AC-23 B	63/80	63/80	63/80	125/125	125/125	125/125	400/400	400/400
220 VDC	DC-21 A/ DC-21 B	125/125	160/160	200/200	250/250	250/250	250/250	500/500	630/630
220 VDC	DC-22 A / DC-22 B	125/125	160/160	200/200	250/250	250/250	250/250	500/500	630/630
220 VDC	DC-23 A/ DC-23 B	125/125	125/125	125/125	200/200	200/200	200/200	500/500	630/630
$440 \mathrm{VDC}{ }^{(2)}$	DC-21 A/ DC-21 B	125/125	125/125	125/125	200/200	200/200	200/200	500/500	630/630
$440 \mathrm{VDC}{ }^{(2)}$	DC-22 A/ DC-22 B	125/125	125/125	125/125	200/200	200/200	200/200	500/500	630/630
$440 \mathrm{VDC}{ }^{(2)}$	DC-23 A / DC-23 B	125/125	125/125	125/125	200/200	200/200	200/200	500/500	630/630

Rated operational currents $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ according to IEC 60947-6-1
Rated voltage Utilisation category

(1) Category with index $A=$ frequent operation - Category with index $B=$ infrequent operation. (3) Interphase barriers must be installed on the products.
(2) 3 -pole device with 2 pole in series for the " + " an 1 pole for the " - ". (4) Values given at 690 VAC.

4 -pole device with 2 poles in series by polarity.

Thermal current $\mathrm{Ith}_{\text {th }}$ at $40^{\circ} \mathrm{C}$		800 A	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A
Frame size		B6	B6	B6	B7	B8	B8	B8
Rated insulation voltage $\mathrm{U}_{\mathrm{i}} \mathrm{M}$ (power circuit)		1000	1000	1000	1000	1000	1000	1000
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$ (kV) (power circuit)		12	12	12	12	12	12	12
Rated insulation voltage $\mathrm{U}_{\mathrm{i}}(\mathrm{V})$ (control circuit)		300	300	300	300	300	300	300
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}(\mathrm{kV}$) (control circuit)		4	4	4	4	4	4	4
Rated operational currents $\mathrm{l}_{\mathrm{e}}(\mathrm{A})$ according to IEC 60947-3								
Rated voltage	Utilisation category	A/B ${ }^{(1)}$	$\mathrm{A} / \mathrm{B}^{(1)}$					
415 VAC	AC-21 A/AC-21 B	800/800	1000/1000	1250/1250	1600/1600	-/2000	-/2500	-/3200
415 VAC	AC-22 A/AC-22 B	800/800	1000/1000	1250/1250	1600/1600	-/2000	-/2500	-/3200
415 VAC	AC-23 A / AC-23 B	800/800	1000/1000	1250/1250	1250/1250	-/1600	-/1600	-/1600
500 VAC	AC-21 A/AC-21 B	800/800	1000/1000	1250/1250	1600/1600	-/2000	-/2000	-/2000
500 VAC	AC-22 A / AC-22 B	630/630	800/800	1000/1000	1600/1600			
500 VAC	AC-23 A/AC-23 B	630/630	630/630	800/800	1000/1000			
$690 \mathrm{VAC}^{(3)}$	AC-21 A/AC-21 B	800/800	1000/1000	1250/1250	1600/1600	-/2000	-/2000	-/2000
$690 \mathrm{VAC}^{(3)}$	AC-22 A/ AC-22 B	630/630	800/800	1000/1000	1000/1000			
$690 \mathrm{VAC}^{(3)}$	AC-23 A/AC-23B	630/630	630/630	800/800	800/800			
220 VDC	DC-21 A/DC-21 B	800/800	1000/1000	1250/1250	1250/1250			
220 VDC	DC-22 A / DC-22 B	800/800	1000/1000	1250/1250	1250/1250			
220 VDC	DC-23 A / DC-23 B	800/800	1000/1000	1250/1250	1250/1250			
$440 \mathrm{VDC}{ }^{(2)}$	DC-21 A / DC-21 B	800/800	1000/1000	1250/1250	1250/1250			
$440 \mathrm{VDC} C^{(2)}$	DC-22 A / DC-22 B	800/800	1000/1000	1250/1250	1250/1250			
$440 \mathrm{VDC}{ }^{(2)}$	DC-23 A / DC-23 B	800/800	1000/1000	1250/1250	1250/1250			
Rated operational currents $\mathrm{l}_{\mathrm{e}}(A)$ according to IEC 60947-6-1								
Rated voltage	Utilisation category							
415 VAC	AC-31 B	800	1000	1250	1600	2000	2500	3200
415 VAC	AC-32 B	800	1000	1250	1250	2000	2000	2000
415 VAC	AC-33 B	800	1000	1000	1000	1250	1250	1250

Current rated as conditional short-circuit with fuse gG DIN, according to IEC 60947-3

Prospective fuse protected short-circuit withstand at $415 \mathrm{VAC}(\mathrm{kA} \mathrm{rms})$	50	50	100	100			
Prospective fuse protected short-circuit withstand at 690 VAC(KA rms)	50	50	50				
Associated fuse rating (A)	800	1000	1250	2x800			
Short-circuit withstand without protection as per IEC 60947-3							
Rated short-time withstand current $0.3 \mathrm{~s} \mathrm{I}_{\mathrm{cw}}$ at 415 VAC (kA rms)	64	64	64	78	78	78	78
Rated short-time withstand current $1 \mathrm{~s} \mathrm{I}_{\mathrm{cw}}$ at 415 VAC (kA rms)	35	35	35	50	50	50	50
Rated peak withstand current at 415 VAC (kA peak)	55	55	80	110	120	120	120
Short-circuit withstand without protection as per IEC 60947-6-1							
Rated short-time withstand current $30 \mathrm{~ms} \mathrm{l}_{\mathrm{cw}}$ at 415 VAC (kA rms)							
Rated short-time withstand current $60 \mathrm{~ms} \mathrm{I}_{\mathrm{cw}}$ at 415 VAC (kA rms)	20	20	25	32	50	50	50
Connection							
Minimum Cu cable cross-section as per IEC 60947-1 (mm²)	2×185						
Recommended Cu busbar cross-section (mm^{2})	$2 \times 50 \times 5$	$2 \times 63 \times 5$	$2 \times 60 \times 7$	$2 \times 100 \times 5$	$3 \times 100 \times 5$	$2 \times 100 \times 10$	$3 \times 100 \times 10$
Maximum Cu cable cross-section (mm^{2})	4×185	4×185	4×185	6×185			
Maximum Cu busbar width (mm)	63	63	63	100	100	100	100
Min./max. tightening torque (Nm)	9/13	9/13	20/26	40/45	40/45	40/45	40/45
Switching time (rated voltage, after receiving command)							
Transfer time I-II or II-I (s)	2.8	2.8	2.8	2.9	2.8	2.8	2.8
I-0 or II-0 (s)	1.4	1.4	1.4	1.4	1.8	1.8	1.8
Contact transfer time ("black-out" I-II) minimum (s)	1.4	1.4	1.4	1.5	1	1	1
Power supply							
Min./max. power (VAC)	166/332	166/332	166/332	166/332	166/332	166/332	166/332
Control supply power demand							
Demand/rated power (VA) - ATyS r, ATyS d	460/184	460/184	460/184	460/230	812/322	812/322	812/322
Demand/rated power (VA) - ATyS t, g, p	482/206	482/206	482/206	482/252	834/344	834/344	834/344
Mechanical specifications							
Durability (number of operating cycles)	4,000	4,000	4,000	3,000	3,000	3,000	3,000
Weight ATyS r 3 P / 4 P (kg)	27.9/32.2	28.4/32.9	28.9/33.6	33.1/39.4	50.7/61.6	50.7/61.6	61.0/75.3
Weight ATyS d 3 P / 4 P (kg)	28.5/32.8	29.0/33.5	29.5/34.2	33.7/ 40.0	51.3/62.2	51.3/ 62.2	61.6/75.9
Weight ATyS t, g, p 3 P / 4 P (kg)	29.0/33.3	29.5/34.0	30.0/34.7	34.2/ 40.5	51.8/62.7	51.8/62.7	62.1/76.4

[^6]Connections and terminals
ATyS r

1 primary source (network or genset)
2 backup source (mains network or genset)
1: position 0 control (contact or logic if closed)
2: position I control
3: position II control
4: primary control position 0
5: closing this contact allows position control commands
6: product availability relay
7: auxiliary contact - closed when the switch is in position II
8: auxiliary contact - closed when ther switch is in position I
9: auxiliary contact - closed when the switch is in position 0

ATyS g

1 primary source (mains network)
2 backup source (genset or network)
1: position 0 control (contact or logic if closed)
2: position I control
3: position |l control
4: primary control position 0
5: closing this contact allows position control commands
6: Motor unit availability relay
7: auxiliary contact - closed when the switch is in position II
8: auxiliary contact - closed when the switch is in position I
9: auxiliary contact - closed when the switch is in position 0
10: D10 remote interface
11: Electrical unit availability relay
12: automatic operation inhibited
13: confirm manual retransfer
14: bypass for time delay 2AT
15: M/G: priority test on load.
M/M: with or without priority.
16: remote test without load
17: M/G: test on load
M / M : preferred source selection
19-20: genset start and stop commands

Order	71/72 (19)	71/74 (20)
Genset start-up	Closed contact	Open contact
Genset stop	Open contact	Closed contact

21 : voltage inputs
22: power inputs

ATyS p

1 primary source (network or genset)
2 backup source (network or genset)
1: position 0 control (contact or logic if closed)
2: position I control
3: control position II
4: primary control position 0
5: closing this contact allows position control commands
6: Motor unit availability relay
7: auxiliary contact - closed when the switch is in position II
8: auxiliary contact - closed when the switch is in position I
9: auxiliary contact - closed when the switch is in position 0
10: D20 remote interface
11: Electrical unit availability relay
12-17: programmable inputs
18: auxiliary power supply for optional modules
19-20: genset start and stop commands

Order	71/72(19)	71/74 (20)
Genset start-up	Closed contact	Open contact
Genset stop	Open contact	Closed contact

21 : 4 slots for optional modules
22: Tl measurement connection
23 : voltage inputs
24: power inputs

ATyS range

ATyS r, ATyS d, ATyS t, ATyS g, ATyS p
from 125 to 3200 A

Dimensions
125 to 630 A / B3 to B5

800 to 1600 A / B6 to B7

4. Terminal screens
5. Inter-phase screen
6. Handle

Rating (A) /	Overall dimensions	Terminal shrouds	Switch body				Switch mounting		Connection						
Frame size	B	AC	F 3p.	F 4p.	J 3p.	J 4p.	M 3p.	M 4p.	T	U	V	X	Y	Z1	AA
800 / B6	370	461	504	584	306.5	386.5	255	335	80	50	60.5	47.5	7	66.5	321
1000 / B6	370	461	504	584	306.5	386.5	255	335	80	50	60.5	47.5	7	66.5	321
1250 / B6	370	461	504	584	306.5	386.5	255	335	80	60	65	47.5	7	66.5	330
1600/B7	380	531	596	716	398.5	518.5	347	467	120	90	44	53	8	67.5	288

Rating (A)	Overall dimensions B	Terminal shrouds AC	Switch body				Switch mounting		Connection						
			A 3p.	A 4p.	J 3p.	J 4p.	M 3p.	M 4p.	T	U	V	X	Y	Z1	AA
2000 ... 3200	380	531	596	716	399	519	347	467	120	90	44	53	8	67.5	288

Door cutout

Connection terminals

```
800 to 1000 A / B6
```

1250 A / B6

ATyS d H
Remotely operated Transfer Switching Equipment from 4000 to 6300 A

Function

The ATyS d H is a three-phase transfer switch, 3 and 4 poles, designed for low voltage high power applications that require high-performance and fast reliable switching. The open transition transfer is performed on-load in line with IEC 60947-6-1 and GB 14048-11 standards (Class PC) with minimal power supply interruption to the load during transfer.
The ATyS d H is remote transfer switching equipment (RTSE) with an integrated dual power supply (DPS) that accepts remote orders through volt-free contacts.

The solution for

$>$ Data centre
$>$ Telecommunications
$>$ Industries

Strong points

$>$ Ready for installation in the enclosure of your choice
$>$ High-performance switching
$>$ Safe on-load transfer: I-0-II

Conformity to standards

$>$ IEC 60947-6-1
$>$ GB 14048-11

Approvals and certifications

CC.

Enclosed solution

> Please contact your SOCOMEC office

External automatic controller

The ATyS d H is an RTSE which is compatible with most building management systems. It may also be supplied as an ATSE by including an ATyS C20/C30/ C40 controller with a door mounted external display.

References

ATyS d H					
Rating (A)	Type	Number of poles	ATyS d H IEC Reference	ATyS d H CCC Reference	Control relay Reference
4000 A	Fixed	3 P	95333400	9533 3400 CN	$\begin{aligned} & \text { ATyS C20 } \\ & 15993020 \end{aligned}$
		4 P	95334400	9533 4400 CN	
	Withdrawable	$3 P$	95333401	95333401 CN	
		4 P	95334401	95334401 CN	
5000 A	Fixed	$3 P$	95333500	9533 3500 CN	
		4 P	95334500	9533 4500 CN	$\begin{aligned} & \text { ATyS C30 } \\ & 15993030 \end{aligned}$
	Withdrawable	3 P	95333501	95333501 CN	
		4 P	95334501	95334501 CN	$\begin{aligned} & \text { ATyS C40 } \\ & 15993040 \end{aligned}$
6300 A	Fixed	$3 P$	95333630	9533 3630 CN	
		4 P	95334630	9533 4630 CN	
	Withdrawable	3 P	95333631	95333631 CN	
		4 P	95334631	95334631 CN	

Characteristics according to IEC 60947-6-1

4000 to 6300 A

Thermal current I_{th} at $40^{\circ} \mathrm{C}$	4000 A	5000 A	6300 A
Rated operating voltage $U_{e}(M)$	660		
Rated insulation voltage $\mathrm{U}_{\mathrm{i}}(\mathrm{M})$	660		
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$ (kV)	12		
Rated short-circuit withstand at 660 VAC			
Rated short-time withstand current $0.1 \mathrm{~s}_{\mathrm{cw}}$ (kA rms)	65		
Rated peak withstand current (kA peak)	143		
Rated operational current $I_{e}(A)$, at 660 VAC - AC32B	4000	5000	6300
Rated operational current $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$, at 660 VAC - AC33iB ($6 \mathrm{xln} \cos \varnothing 0.5$)	4000	5000	6300
Connection			
Rear connection with busbar	-	-	-
Switching time			
1 to 0 (ms)	≤ 150		
0 to I and 0 to II (ms)	≤ 90		
1 t to 0 (ms)	≤ 200		
I-0-II/ /II-O-I (s)	1.2		
Operating frequency	10 operations per hour		
Power supply			
VAC power supply (powered directly on terminals S1 and S2)	230		
Main coil operating current (peak during transfers)	$65 \mathrm{~A}^{(1)}$		
Mechanical characteristics			
Durability (number of operating cycles)	3000		
Weight (kg) - Fixed 3/4P model	$200 / 250$	$200 / 250$	200/250
Weight (kg) - Plug-in 3/4P model	$300 / 400$	300/400	300/400

[^7]
ATyS d H

Remotely operated Transfer Switching Equipment from 4000 to 6300 A

Dimensions

Dimensions for fixed models

Dimensions for drawout models

ATyS C20/C30/C40

ATyS C20 controller

ATyS C40 controller

Function

ATyS C20/C30/C40 are modular control relays. They ensure the automatic control of remotely controlled transfer switches, ATyS, ATyS S and ATys M, as well as contactors, circuit breakers or other motorised switches.

Strong points

$>$ Auxiliary power supply
> Modular device
> Extended compatibility of use

Conformity to standards

$>$ IEC 61010-1
$>$ IEC 61000-4-x

$>$ IEC 60068-2-x

General characteristics

ATyS C20/C30

- Inputs for auxiliary contact position information.
- 3U measurement on network 1 and 1 U on network 2.
- 2 programmable inputs for the following functions: test on/off load, manual retransfer, start/stop transfer cycle.
- Up to 2 programmable outputs for the following functions: source availability information and circuit breaker control.
- 1 relay output for genset control.
- D10 or D20 remote interfaces are available for transferring data or control to the front panel (only on C30 version).

Advantages

Auxiliary power supply

Two versions of the ATyS C30 are available. One version with an AC supply via the measurement inputs and another with a DC auxiliary supply.

ATyS C40

- Dual genset controller with a redundant genset application cycle (basic cycle).
- 1 U and F measurement on each source genset 1 \& genset 2.
- 3 programmable inputs for the following functions: test on/off load, manual retransfer, start/stop transfer cycle.
- 1 programmable output for the following functions : source availability information and circuit breaker control.
- 2 genset control contacts (Gen1 \& Gen2).

Extended compatibility of use

The product is used with Socomec transfer switches, or those using identical technology. It is also compatible with contactor and circuit breaker technologies.

Modular device

The ATyS C20, C30 and C40 are modular products (6 modules, 105 mm wide) which can be DIN-rail mounted.

Configurations
ATyS C20/C30:
Mains/mains and mains/genset applications

1. Measurement and power supply
2. Control and position information feedback
3. Genset start / stop control
4. ATyS display/interface connection (only on C30 version)

ATyS C40:
Genset/genset applications

1 and $1^{\prime} .1 \mathrm{U}$ and F measurement for each genset
2. Control and position information feedback

3 and 3'. Genset "start/stop" control
4. External "start/stop" command for basic cycle
5. DC power supply

Electrical characteristics

Supplied from measurement circuit	$110 \ldots 400$ VAC
DC power supply	$9 \ldots 30 \mathrm{VDC}$
Measurement range	$110 \ldots 400 \mathrm{VAC} / \pm 10 \%$
Frequency	$50 / 60 \mathrm{~Hz}$
Accuracy	$\pm 1 \%$

Terminals

ATyS C40

1. Genset G1 start / stop control 2. Position 1: power control 3. Position 2: power control 4. O1: programmable output 5. Genset G2 start / stop control 6. AC1: auxiliary contact position 1 7. I3: programmable input
2. AC2: auxiliary contact position 2 9. 11: programmable input 10. 12: programmable input 11. Genset G1: 1 U measurement 12. Genset G2: 1 U measurement 13. DC power supply 9-30 VDC

| | ATyS C20 | |
| :--- | :---: | :---: | :---: |
| Type | ATyS C30
 Reference | ATyS C40
 Reference |
| Supplied from measurement circuit | 15993020 | |

Enclosed transfer switch solutions

ATyS Bypass "no-break" solution
ATSE* - Automatic equipment from 40 to 3200 A

Function

- Automatic transfer between two sources to ensure continuity of supply to critical loads such as sprinklers, fire lifts, water pumps..
- Guaranteed continuity of the power supply during maintenance and test operations.
- Complete isolation of the Automatic Transfer Switch ensuring maintenance safety.

General characteristics

- From 40 to 3200 A - 4 poles.
- 230/400 VAC $\pm 20 \%, 50 / 60 \mathrm{~Hz}$, self-powered from incoming sources.
- Normal/Emergency logic control sequence.
- Voltage and frequency checking of networks I and II.
- Control of phase rotation.
- 1 configurable output relay for generator start/stop command.
- Position I, 0, II control by external dry contact.
- Manual emergency operation.
- Auxiliary contacts.
- MODBUS communication (factory fitted).
- The association of an ATyS along with a remote interface D20, enables configuration, exploitation and visualisation of the data shown on the front of the equipment (timer settings, hysterisis, start/ stop of the genset...).
- AUTO / MANU selector.
- Equipment protection degree: IP41 as standard - Other IP upon request.
- Hinged door.
- Wall mounting brackets supplied up to 160 A.
- Floor standing feet from 250 to 3200 A.
- Easy extraction of ATyS from 160 A.
- Phase identification.
- Mimic panel (3 LEDs; source availability (1 and 2) and load; 16 LED mimic panel optional).
- Integral protection against direct contact on each functional unit.
- Steel enclosure.
- Colour: RAL 7035.

The solution for

$>$ Data centres
$>$ Power production
$>$ Healthcare buildings
$>$ High-rise buildings
$>$ Banking and Insurance
> Transportation

Strong points

$>$ No-break load transfer in Bypass mode
Solution certified by a manufacturer

Optional accessories available

Conformity to standards

Expert Services

Study, definition, advice,
implementation, maintenance and training...
Our Expert Services team offers customised support to make your project a success.

2 versions

ATyS Bypass Single Line

- It consists of 2 functions: an automatic transfer switch and a single Bypass line connected to the preferred supply source.

ATyS Bypass Double Line

- It consists of 3 functions: an automatic transfer switch, an ATyS Bypass and a facility for selecting between supply sources when in Bypass.

ATyS Bypass - SINGLE LINE

ATyS Bypass - DOUBLE LINE

Use

Normal Position:

- The load is supplied by the supply defined as the preferred source. In case of primary source failure, the ATyS automatically transfers the load to the alternate source when available.

Bypass position:

- Manually switch Q1 to bypass mode without interrupting supply to the load. Then open switch Q2 to completely isolate the ATyS for inspection.

Test Position:

- From the Bypass position, switch Q2 can be closed to supply the ATyS and achieve operational checks, without jeopardizing the supply to the load. Transfer to the normal position can then be achieved.

References

Standard product - 230 VAC for ATyS p M				Standard product-230 VAC for ATyS p			
Rating (A)	No. of poles	Single Line Reference	Double Line Reference	Rating (A)	No. of poles	Single Line Reference	Double Line Reference
40	4 P	17854004	17864004	160	4 P	17854016	17864016
63	4 P	17854006	17864006	250	4 P	17854025	17864025
80	4 P	17854008	17864008	400	4 P	17854040	17864040
100	4 P	17854010	17864010	630	4 P	17854063	17864063
125	4 P	17854012	17864012	800	4 P	17854080	17864080
				1000	4 P	17854100	17864100
				1250	4 P	17854120	17864120
				1600	4 P	17854160	17864160
				2000	4 P	17854200	17864200
				2500	4 P	17854250	17864250
				3200	4 P	17854320	17864320

Enclosed transfer switch solutions

ATyS Bypass "no-break" solution
ATSE - Automatic equipment from 40 to 3200 A

Accessories

Customer fit

Description	Reference
2 inputs / 2 outputs module (ATyS p only)	1599 2001 ${ }^{(1)}$
(1) Up to can be fited	

(1) Up to 3 can be fitted.

Extension cabinet

Use

From 1250A to 3200 A, the standard enclosed ATyS Bypass is supplied with connections to allow for Bottom/Bottom or Bottom/Top cable entry.
In order to facilitate the wiring, we propose the use of an extension cabinet, which can be mounted to the side of the standard ATyS Bypass enclosure, when utilising all other types of connections (TT/TB/BT). The extension cabinet also enables any necessary future adaptation.

Rating (A)	Reference
$1250 \ldots 2000$	15999004
$2500 \ldots 3200$	15999005

Protection against overvoltages

Use

In order to ensure protection of the equipment against overvoltages, type 1 and 2 surge protection is available.

For more information, please see our general catalogue.

Rating (A)	Reference
$40 \ldots 125$	15999016
$250 \ldots 400$	15999017
$630 \ldots 3200$	15999018

Multifunction meter
Use
Multifunction meters are now available for
For more information, please see the display and monitoring of all the electrical our general catalogue.

Engine Exerciser

Use
The enclosed ATyS Bypass up to 125 A can be supplied with a genset exerciser (configure generator Start/Stop times, enable/disable routines, etc.).

Description

Engine Exerciser
Reference
15999006

Tinned Busbars

| Use | Rating (A) | Reference | |
| :--- | :--- | :--- | :--- | :--- |
| Tinned busbar option for severe | 250 | 15999007 | |
| environmental conditions. | 400 | 15999008 | |
| | 630 | 15999009 | |
| | 800 | 15999010 | |
| | 1000 | 15999011 | |
| | $1250 \ldots 1600$ | 15999013 | |
| | 2000 | 1599 | 9014 |
| | $2500 \ldots 3200$ | 1599 | 9015 |

Signalling

Use

To get a global overview of the system status, an optional 17 LED mimic panel is available (voltage availability per phase and device positions).

Mimic panel | Rating (A) | $\begin{array}{c}\text { Single Line } \\ \text { Reference }\end{array}$ | $\begin{array}{c}\text { Double Line } \\ \text { Reference }\end{array}$ |
| :--- | :---: | :---: |
| $40 \ldots 3200$ | 15999033 | 15999034 |

Dimensions

Wall mounting - Bottom

Rating (A)	Recommended connection cross-section $\left(\mathbf{m m}^{2}\right)$	\mathbf{H} $\mathbf{(m m)}$	\mathbf{W} $\mathbf{(m m)}$	\mathbf{D} $\mathbf{m m})$	\mathbf{M} $(\mathbf{m m})$	\mathbf{N} $\mathbf{(m m)}$	Weight $\mathbf{(k g)}$
40	10	800	800	300	848	752	80
63	16	800	800	300	848	752	80
80	25	800	800	300	848	752	80
100	35	1000	800	300	848	752	80
125	50	1000	800	300	848	752	80
160	70	1000	800	400	848	752	160

Connection (input / output)

- From 40 to 125 A (B/B or T/B or T/T or B/T),
- From 160 to 400 A (B/B or B / T),
- 630 A (B/B),
$\bullet \geq 800 \mathrm{~A}$ (Consult us).

Rating (A)	Recommended connection cross-section (mm^{2})	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\begin{gathered} \text { W } \\ (\mathrm{mm}) \end{gathered}$	$\underset{(\mathrm{mm})}{\mathrm{D}}$	Weight (kg)
250	120	$1200{ }^{(1)}$	1000	550	180
400	240	$1200{ }^{(1)}$	1000	550	200
630	2×185	$1600{ }^{(1)}$	1200	600	600
800	2×240	$1800{ }^{(1)}$	1600	800	1000
1000	4×150	$1800{ }^{(1)}$	1600	800	1000
1250	4×185	$2000{ }^{(1)}$	2000	1000	2000
1600	4×240	$2000{ }^{(1)}$	2000	1000	2000
2000	8×150	$2000{ }^{(1)}$	2200	1000	2500
2500	8×185	$2000{ }^{(1)}$	2200	1000	2500
3200	8×240	$2000{ }^{(1)}$	2200	1000	2500

(1) Add 100 mm for feet.

The UL product range

A range of manual or remotely operated transfer switches up to 1200 A

MTSE	RTSE
(Manual)	(Remotely operated)

Typical applications

The ATyS UL 1008 range provides safe transfer for mains/genset and genset/genset applications.

Function

ATYS and SIRCOVER UL 1008 transfer switching equipment ensure:

- Maintenance free transfer switching equipment with a robust and reliable design.
- Power control and safety between a normal and an alternate source.
- Integrated and robust switch disconnection.
- A stable OFF position with integrated padlocking to facilitate safe downstream maintenance.
- Positive break indication with clear visible position indication I-0-II.
- An inherent failsafe mechanical interlock prevents asynchronous paralleling of the two sources.
- Stable positions (I-0-II) non-affected by typical vibration and shock.
- Constant pressure on the contacts non affected by network voltage perturbation.
- Quick, easy and extremely safe manual operation.

Further to the above the ATyS also includes:

- A simple and secure motorisation remote controls interface.
- Integrated switch position auxiliary contacts.
- An active "product availability" status feedback.
- Compatibility with virtually any make of ATS, AMF and Genset controller provided with volt-free contacts.

Power supply continuity for most electrically controlled total system optional standby power applications.

SOCOMEC UL products

The ATYS UL is a full load break transfer switch where the main switching components are from proven technology devices (SIRCOVER - Manual Transfer Switches) also fulfiling requirements in UL 98 and IEC 60947-3 standards. The transfer is done in open transition with a minimum supply interruption during transfer ensuring full compliance with UL 1008 and IEC 60947-6-1 international TSE standards.

As a stand-alone product, the ATyS is a non-automatic power transfer switch (an electrically operated transfer switch that is not self-acting), generally used in applications where the load is non-emergency, does not require automatic transfer and where operating persons can be made available to initiate the transfer.
The electrical control of the ATyS UL may be direct through pushbuttons and dry contacts fitted onto the enclosure door or through a dedicated local or remote ATS controller.

Your preferred brand of ATS controller, genset / AMF controller or power / building management system, may easily be paired with the ATyS to provide a complete automatic transfer switch to suit your needs.

ATyS have three stable positions (I-0-II) which can be selected remotely, via volt-free contacts, or directly, through use of the emergency operation handle; emergency operation requires no supply to be present. The OFF position provides disconnection of both supplies ensuring downstream isolation for safe maintenance.

UL Applications

ATYS UL 1008 transfer switches are rated from 100 to 400 A and designed for use in total system optional standby power applications for the safe transfer of a load supply between a normal and an alternate source.

Optional standby systems are those systems installed to provide an alternate source of power for structures for which a power outage could cause discomfort or interruption or damage to products or processes.

SIRCOVER UL1008

Manually operated Transfer Switching Equipment from 100 to 1200 A

Transfer switches

Function

SIRCOVER UL1008/98 are heavy duty manual transfer switches. They ensure switching transfer of sources or transfer of two low voltage circuits on load as well as their safe disconnection.
These switches are extremely durable and are tested and approved for use in the most demanding applications, such as resitive load or total system applications.

Advantages

Stable positions

SIRCOVERs have three stable positions which are not affected by voltage drops or vibrations, thus protecting your load against network interference.

Compact design

The SIRCOVER are based on a back-to-back switching technology, providing a compact solution.

On-load switching

The SIRCOVER UL enables secure and reliable switching, without the need for pre-breaking upstream.

Reliability

The SIRCOVER has double breaking per pole acheived through its sliding bar contacts system.
The quick opening and rapid closure provides simultaneous disconnecting or making of all power contacts.

Typical application

The SIRCOVER UL 1008 range provides safe transfer and disconnection at all levels within your LV installation.

Normal power supply to genset transfer

The source transfer will be operated safely even under on-load or over-load conditions

They can be used for changing motor phase for rotation control or equipmement grounding as well.

SOCOMEC solution up to 1200 A

UL 1008 Manual Transfer Switch
From 100 to 400 A for resistive and total systems applications.
UL 98 versions on request

UL 1008 and UL 98 Manual Transfer Switch
From 600 to 1200 A for resistive and total systems applications.
Has UL 98/CSA 22.2\#4 certification

IEC solution up to 3200 A

The SIRCOVER UL 1008 is part of a large range that includes an IEC products of standalone or enclosed manual transfer switches and manual bypass switches with overlapping options. Contact us for further information on our complete range.

SIRCOVER UL1008
Manually operated Transfer Switching Equipment
from 100 to 1200 A

References
SIRCOVER UL 1008

(1) Padlockable in all 3 positions.

Accessories
Direct handle

External handle

Rating (A)	Handle type	Colour	Nema type	Lockable in 3 positions	Reference
$100 . . .200$	S2	Black	4, 4X	no	142 D 2113
$100 . . .200$	S2	Red/Yellow	4, 4X	no	142 E 2113
$100 . . .200$	S2	Black	1,3R, 12	no	142F 2113
$100 . . .200$	S2	Red/Yellow	1, 3R, 12	no	142 G 2113
$100 . . .200$	S2	Black	4, 4X	yes	142D 2813
$100 . . .200$	S2	Red/Yellow	4, 4X	yes	142 E 2813
$100 . . .200$	S2	Black	1,3R, 12	yes	142F 2813
$100 . . .200$	S2	Red/Yellow	1,3R, 12	yes	142 G 2813
260 ... 600	S3	Black	4, 4X	no	143 D 3113
260 ... 600	S3	Red/Yellow	4, 4X	no	143 E 3113
$260 . . .600$	S3	Black	1,3R, 12	no	143F 3113
260 ... 600	S3	Red/Yellow	1, 3R, 12	no	143 G 3113
260 ... 600	S3	Black	4, 4X	yes	143 D 3813
$260 . . .600$	S3	Red/Yellow	4, 4X	yes	143 E 3813
260 ... 600	S3	Black	1,3R, 12	yes	143F 3813
260 ... 600	S3	Red/Yellow	1, 3R, 12	yes	143G 3813
800 ... 1200	S4	Black	4, 4X	no	144D 3113
$800 . . .1200$	S4	Black	1,3R, 12	no	144 E 3113
800 ... 1200	S4	Black	1,3R, 12	no	144 E 3113
800 ... 1200	S4	Red/Yellow	1,3R, 12	no	144G 3113
800 ... 1200	S4	Black	4, 4X	yes	144D 3813
800 ... 1200	S4	Red/Yellow	4, 4X	yes	144 E 3813
800 ... 1200	S4	Black	1,3R, 12	yes	144F 3813
$800 . . .1200$	S4	Red/Yellow	1,3R, 12	yes	144G3813
$800 . . .1200$	S5	Black	1, 3R, $12^{(1)}$	no	14538113
$800 . . .1200$	S5	Red/Yellow	1,3R, $12^{(1)}$	no	14548113
800 ... 1200	V1	Black	$1,3 \mathrm{R}, 12^{(1)}$	no	41997149

(1) For 4, $4 \times$ please consult us.

Use

The handle interlocking function prevents the user from opening the door of the enclosure when the switch is in the "ON" position. Opening the door when the switch is in the "ON" position is possible by defeating the interlocking function (not S 5 and V handles) with the use of a tool (authorised persons only).
The interlocking function is restored when the door is re-closed.

Shaft for external handle

	Handle Rating (A)		Length (ype		(in)	(mm)
(in)	(mm)	Reference				
$100 \ldots 200$	S 2	7.9	200	$10 \ldots 14.3$	$254 \ldots 362$	14001020
$100 \ldots 200$	S 2	12.6	320	$10 \ldots 19$	$254 \ldots 482$	14001032
$100 \ldots 200$	S 2	15.7	400	$10 \ldots 22.1$	$254 \ldots 562$	14001040
$260 \ldots 400$	S 3	7.9	200	$12 \ldots 18.4$	$305 \ldots 467$	14011520
$260 \ldots 400$	S 3	12.6	320	$12 \ldots 23.1$	$305 \ldots 587$	14011532
$260 \ldots 400$	S 3	15.7	400	$12 \ldots 26.3$	$305 \ldots 667$	14011540
$260 \ldots 400$	S 3	7.9	200	$20 \ldots 23.4$	$508 \ldots 594$	14011520
$260 \ldots 400$	S 3	12.6	320	$20 \ldots 28.1$	$508 \ldots 714$	14011532
$260 \ldots 400$	S 3	15.7	400	$20 \ldots 31.3$	$508 \ldots 794$	14011540
$800 \ldots 1200$	S 4	7.9	200	$20 \ldots 23.4$	$508 \ldots 594$	14011520
$800 \ldots 1200$	S 4	12.6	320	$20 \ldots 28.1$	$508 \ldots 714$	14011532
$800 \ldots 1200$	S 4	15.7	400	$20 \ldots 31.3$	$508 \ldots 794$	14011540
$800 \ldots 1200$	$\mathrm{~V} 1 / \mathrm{S} 5$	12.6	320	$20 \ldots 28.1$	$508 \ldots 714$	41993018
$800 \ldots 1200$	$\mathrm{~V} 1 / \mathrm{S} 5$	15.7	400	$20 \ldots 31.3$	$508 \ldots 794$	41993019

Manually operated Transfer Switching Equipment
from 100 to 1200 A

Accessories (continued)

Bridging bars

Use

Creation of a common point, above or below the switch, between positions I and II.

Rating (A)	No. bridging bar	Reference
$100 \ldots 200$	2	41592021
$100 \ldots 200$	3	41593021
$100 \ldots 200$	4	41594021
$260 \ldots 400$	2	41592041
$260 \ldots 400$	3	41593041
$260 \ldots 400$	4	41594041
600	3	41593063
600	4	41594063
$800 \ldots 1200$	3	41593080
$800 \ldots 1200$	4	41594080

Terminal protection screen

Use

Top or bottom protection against direct contact with terminals or connecting parts.

Rating (A)	No. of poles	Reference
$100 \ldots 200$	$2 P / 3 P$	41583021
$100 \ldots 200$	$4 P$	41584021
$260 \ldots 400$	$2 P / 3 P$	41583041
$260 \ldots 400$	$4 P$	41584041
600	$6 P$	16093063
600	$4 P$	16094063
$800 \ldots 1200$	$3 P$	16093080
$800 \ldots 1200$	$4 P$	16094080

Auxiliary contacts

Use
Pre-break and signalisation of positions .
For low level ACs and other ACs contact us.

Electrical characteristics
A300.

NO/NC auxiliary contact

NO/NC auxiliary contact	Contact (s)	Reference
Rating (A)	NO/NC on position 1 and 2	41590021
$100 \ldots 400$	Low level $\mathrm{NO} / \mathrm{NC}$	41590022
on position 1 and 2		
$100 \ldots 400$	NO/NC on position 1 and 2	included
$600 \ldots 1200$		

Terminal lugs

Use

Connection of bare copper cables onto the terminals (without lugs).

Rating (A)	Wires range	No wires per lug	Lugs per kit	Wires	Reference
$100 \ldots 200$	$6-300 \mathrm{MCM}$	1	2	$\mathrm{Cu} / \mathrm{Al}$	39542020
$100 \ldots 200$	$6-300 \mathrm{MCM}$	1	3	$\mathrm{Cu} / \mathrm{Al}$	39543020
$100 \ldots 200$	$6-300 \mathrm{MCM}$	1	4	$\mathrm{Cu} / \mathrm{Al}$	39544020
$260 \ldots 400$	$4-600 \mathrm{MCM}$	1	2	$\mathrm{Cu} / \mathrm{Al}$	39542040
$260 \ldots 400$	$4-600 \mathrm{MCM}$	1	3	$\mathrm{Cu} / \mathrm{Al}$	39543040
$260 \ldots 400$	$4-600 \mathrm{MCM}$	1	4	$\mathrm{Cu} / \mathrm{Al}$	39544040
600	$2 \times$ (\#2-600MCM)	2	3	$\mathrm{Cu} / \mathrm{Al}$	39543060
600	$2 \times(\# 2-600 \mathrm{MCM})$	2	4	$\mathrm{Cu} / \mathrm{Al}$	39544060
$800 \ldots 1200^{(1)}$	$2 \times 2 \times(\# 2-600 \mathrm{MCM})$	2	6	$\mathrm{Cu} / \mathrm{Al}$	39543120
$800 \ldots 1200^{(1)}$	$2 \times 2 \times(\# 2-600 \mathrm{MCM})$	2	8	$\mathrm{Cu} / \mathrm{Al}$	39544120

[^8]Characteristics
Characteristics according to UL 1008

General use rating (A)	100 A	200 A	260 A	400 A	600 A	800 A	1200 A
Operation voltage $2 \mathrm{P} / 3-4 \mathrm{P}$	240/600	240/600	240/600	240/600	- / 600	- / 600	- / 600
Short circuit rating with circuit breaker (kA) / Short-circuit capacity (ms)	10/25	10 / 25	14 / 50	14 / 50	$35 / 50$	$35 / 50$	$35 / 50$
Short circuit rating at 600 VAC (kA)	100	100	65	65	100	100	100
Type of fuse	J	J	J	J	L	L	L
Max. fuse rating (A)	200	400	600	600	800	1000	1600

Short circuit rating at 600 VAC with "Specific Circuit Breaker" (kA)

Square D JJ breaker 250 A 2 poles 240 VAC / $3-4$ poles 480 VAC	65	65	-	-	-	-	-
Schneider Electric NSX-F 160 A 3-4 poles 480 VAC	35	-	-	-	-	-	-
Rated operational current 1 ph							
240 VAC "Total system" (A)	100	200	260	400	-	-	-
240 VAC resistive load (A)	100	200	260	400	-	-	-
Rated operational current 3 ph							
240 VAC "Total System" (A)	100	200	260	400	400	700	700
240 VAC resistive load (A)	100	200	260	400	600	800	1200
480 VAC "Total System" (A)	100	100	260	400	350	600	600
480 VAC resistive load (A)	100	200	260	400	600	800	1200
600 VAC "Total System" (A)	100	100	200	200			
600 VAC resistive load (A)	100	200	260	400	400	800	1200
Mechanical endurance							
Endurance (number of operating cycles)	6050	6050	6050	4050	3050	3050	3050
Connection terminals							
Min. connection section / AWG	\#6	\#6	\#4/2x1/0	\# $4 / 2 \times 1 / 0$	2 x \#2	2 x \#2	4 x \#2
Max. connection section / AWG	300MCM	300 MCM	600MCM / $2 \times 250 \mathrm{MCM}$	600MCM / $2 \times 250 \mathrm{MCM}$	$2 \times 600 \mathrm{MCM}$	$2 \times 600 \mathrm{MCM}$	$4 \times 600 \mathrm{MCM}$

Characteristics according to UL 98/CSA 22.2\#4

General use rating at 600 VAC and 250 VDC (A)	Specific reference upon request				600 A	800 A	1200 A
Short circuit rating at 600 VAC (kA)	-	-	-	-	200	100	100
Type of fuse	-	-	-	-	J	L	L
Max. fuse rating (A)	-	-	-	-	600	800	1200
Max. motor, hp / FLA 3 ph motor max.							
220-240 VAC	-	-	-	-	200/480	-	-
440-480 VAC	-	-	-	-	400/477	-	-
600 VAC	-	-	-	-	$500 / 472$	-	-
Mechanical characteristics							
Endurance (number of operating cycles)	-	-	-	-	5000	3500	2500
Operating torque (lbs.in/Nm)	-	-	-	-	327.5/37	442.5/50	442.5/50
Auxiliary contacts							
Electrical characteristics	A300						

Mounting orientation

100 to 400 A

600 to 1200 A

Manually operated Transfer Switching Equipment
from 100 to 1200 A

Dimensions (in/mm)
100 to 200 A

260 to 400 A

600 A

800 to 1200 A

Manually operated Transfer Switching Equipment
from 100 to 1200 A

Terminal lugs (in/mm)
100 to 200 A

600 to 1200 A

sirco_115_b_1_us_cat

300 kcmil

sirco_116_b_1_us_cat

External handles dimensions (in/mm)
100 and 200 A
Handle type

260 and 600 A
Handle type

External handles dimensions (in/mm) (continued)
800 to 1200 A
Handle type

800 to 1200 A			
Handle type	Front operation Direction of operation	Door drilling	
S5 type with V Escutcheon			
Handle type	Front operation Direction of operation	Door drilling	
			\% 0 0 0 7 0 0 0 0 c \%

ATyS UL1008
 Remotely operated Transfer Switching Equipment from 100 to 400 A

Strong points

$>$ Robust and reliable design
$>$ Compatible with virtually any ATS controller
$>$ On-load manual operation
$>$ Maintenance free

Conformity to standards

> UL 1008,
Guide WPYV,
file 317092
Product reference on request.

Your choice of ATS controls

$>$ Your preferred brand of ATS controller, genset/AMF controller or power/building management system, may easily be paired with the ATyS to provide a complete automatic transfer switch that perfectly suits your needs.

Advantages

Robust and reliable design

ATyS is a remotely operated transfer switch tested in full compliance with UL 1008. The design integrates a failsafe mechanical interlock to ensure that the main source is never inadvertently connected to the alternate. The stable position design ensures that the switch is unaffected by vibration or network voltage perturbation. The ATyS also includes a removable handle for emergency manual operation. This is extremely safe and easy to use.

Maintenance free

The self-cleaning contacts of the ATyS allow the power section to be maintenance free For safe downstream maintenance the ATyS includes a facility for isolation and padlocking in the zero position.
In the unlikely event of a motorisation failure, the ATyS is designed in a way that the motorisation can be replaced easily and very quickly. Furthermore, the ATyS remains manually operational with or without the motorisation in place.

Compatible with virtually any ATS controls

The ATyS is directly compatible with virtually any transfer switching control solution that provides volt free contacts. This allows the ATyS to be combined with most ATS controls available on the market and then used in automatic transfer switch applications.

Typical applications

The ATyS UL 1008 range provides safe transfer for mains/mains, mains/genset and genset/genset applications.

Part of a globally recognized range

The ATyS UL 1008 is part of a large family of products including a complete range of remotely operated and fully automatic transfer switches that comply to IEC and GB standards.

The ATyS range is a world renowned product family trusted by some of the largest manufacturers in the genset industry.

The key to success has been through reliable power availability provided by products that are safe and easy to use.

Please don't hesitate to contact SOCOMEC with any questions regarding the IEC ATyS range of products above rated from 125 to 3200 A .

ATyS UL1008

Remotely operated Transfer Switching Equipment from 100 to 400 A

References
ATYS UL 1008

Rating (A)	No. of poles	ATyS	Bridging bars	Terminal screens	Auxiliary contact	Lug kits
100 A	2 P	97232010	$\begin{gathered} 2 P \\ 41592021 \\ 3 P \\ 41593021 \\ 4 \mathrm{P} \\ 41594021 \end{gathered}$	$\begin{gathered} 2 / 3 \mathrm{P} \\ 41583021 \\ 4 \mathrm{P} \\ 41584021 \end{gathered}$	$\begin{gathered} \mathrm{NO} / \mathrm{NC} \\ 41590021 \end{gathered}$	$\begin{gathered} 2 \mathrm{P} \\ 3954 \mathrm{2020}^{11} \\ 3 \mathrm{P} \\ 39543020^{11} \\ 4 \mathrm{P} \\ 39544020^{11} \end{gathered}$
	$3 P$	97233010				
	4 P	97234010				
200 A	2 P	97232020				
	3 P	97233020				
	4 P	97234020				
260 A	2 P	97232026	$\begin{gathered} 2 \mathrm{P} \\ 41592041 \\ 3 \mathrm{P} \\ 41593041 \\ 4 \mathrm{P} \\ 41594041 \end{gathered}$	$\begin{gathered} 2 / 3 \mathrm{P} \\ 41583021 \\ 4 \mathrm{P} \\ 41584021 \end{gathered}$	Low level 41590022	
	$3 P$	97233026				$39542040^{(2)}$
	4 P	97234026				3 P
400 A	2 P	97232040				$39543040^{(2)}$
	3 P	97233040				$\begin{gathered} 4 \mathrm{P} \\ 39544040^{(2)} \end{gathered}$
	4 P	97234040				

(1) $1 x$ \#6-300MCM.
(2) $1 x \# 6-600 \mathrm{MCM}$

Accessories

Terminal screens

Use
Top and bottom protection against direct contact with terminals or connection parts.

Rating (A)	No. of poles	Position	Reference
$100 \ldots 200$	$2 / 3 P$	top / bottom	41583021
$100 \ldots 200$	$4 P$	top $/$ bottom	41584021
$260 \ldots 400$	$2 / 3 P$	top $/$ bottom	41583041
$260 \ldots 400$	$4 P$	top $/$ bottom	41584041

Bridging bars

Use

For bridging power terminals on the top or bottom side of the switch.
When ordering one reference is required per switch.

Rating (A)	No. bridging bar	Reference
$100 \ldots 200$	2	41592021
$100 \ldots 200$	3	41593021
$100 \ldots 200$	4	41594021
$260 \ldots 400$	2	41592041
$260 \ldots 400$	3	41593041
$260 \ldots 400$	4	41594041

41594021

Accessories (continued)

Auxiliary contacts

Use
Pre-break and signalling of positions I and II: each reference provides $1 \mathrm{NO} / \mathrm{NC}$ auxiliary contact for positions I and II.

ATyS are supplied with 1 NO auxiliary contact for all three positions as standard.

Rating (A)	Designation	Reference
$100 \ldots 400$	NO / NC	41590021
$100 \ldots 400$	Low level NO / NC	41590022

A maximum of 2 Aux contacts per position may be added.

Spares

Motorisation module

Rating (A)	No. of poles	Frame size	Used for ATyS Reference	Motorisation module Reference
100 A	$2,3,4 \mathrm{P}$	B4	$97232010-97233010-97234010$	97095010
200 A	$2,3,4 \mathrm{P}$		$97232020-97233020-97234020$	97095020
260 A	$2,3,4 \mathrm{P}$	B5	$97232026-97233026-97234026$	97095026
400 A	$2,3,4 \mathrm{P}$		$97232040-97233040-97234040$	97095040

Terminals lugs (in/mm)

100 to 200 A

Mounting orientation

Rating (A)	Wires range	Lugs per kit	Wires	Reference
$100 \ldots 200$	$6-300 \mathrm{MCM}$	2	$\mathrm{Cu} / \mathrm{Al}$	39542020
$100 \ldots 200$	$6-300 \mathrm{MCM}$	3	$\mathrm{Cu} / \mathrm{Al}$	39543020
$100 \ldots 200$	$6-300 \mathrm{MCM}$	4	$\mathrm{Cu} / \mathrm{Al}$	39544020
$260 \ldots 400$	$4-600 \mathrm{MCM}$	2	$\mathrm{Cu} / \mathrm{Al}$	39542040
$260 \ldots 400$	$4-600 \mathrm{MCM}$	3	$\mathrm{Cu} / \mathrm{Al}$	39543040
$260 \ldots 400$	$4-600 \mathrm{MCM}$	4	$\mathrm{Cu} / \mathrm{Al}$	39544040

100 to 400 A

ATyS UL1008

Remotely operated Transfer Switching Equipment from 100 to 400 A

Characteristics according to UL 1008 (Optional standby)
100 to 400 A

Frame size General use rating (A)	B4		B5	
	100 A	200 A	260 A	400 A
Operation voltage $2 \mathrm{P} / 3-4 \mathrm{P}$	240/600	240 / 600	240/600	240/600
Short-circuit rating with any breaker (kA) / Short-circuit capacity (ms)	10 / 25	10/25	14 / 50	14 / 50
Short-circuit rating at 600 VAC (kA) with fuses	100	100	65	65
Type of fuse	J	J	J	J
Max. fuse rating (A)	200	400	600	600
Short-circuit rating with specific breaker (kA)				
Square D JJ breaker 250 A 2 poles 240 VAC / 3-4 poles 480 VAC	65	65	-	-
Schneider Electric NSX-F 160 A 3-4 poles 480 VAC	35	-	-	-
Rated operational current 1 ph				
240 VAC "Total system" (A)	100	200	260	400
240 VAC resistive load (A)	100	200	260	400
Rated operational current 3 ph				
240 VAC "Total system" (A)	100	200	260	400
240 VAC resistive load (A)	100	200	260	400
480 VAC "Total system" (A)	100	100	260	400
480 VAC resistive load (A)	100	200	260	400
600 VAC "Total system" (A)	100	100	200	200
600 VAC resistive load (A)	100	200	260	400
Mechanical endurance				
Endurance (number of operating cycles)	6050	6050	6050	4050
Connection terminals				
Min. connection section / AWG	\#6	\#6	\# $4 / 2 \times 1 / 0$	\# $4 / 2 \times 1 / 0$
Max. connection section / AWG	300MCM	300MCM	600MCM / 2x 250MCM	600MCM / 2x 250MCM

Power Supply

Supply voltage VAC $50 / 60 \mathrm{~Hz}$	$208-277$ VAC
Switching time	
I to II or II to I (s)	1.3
I to 0 or 0 to II (s)	0.85
Duration of electrical blackout (s)	0.6

Terminals and connections
Typical wiring for 480/277 VAC and 208/120 VAC networks

1: position 0 control (contactor logic if closed)
2: position I control
3: position II control
4: position 0 priority control
5: closure of this contact enables the position control orders

6: product availability relay
7: auxiliary contact, closed when the switch is in position II
8: auxiliary contact, closed when the switch is in position I
9: auxiliary contact, closed when the switch is in position 0

Dimensions (in/mm)
100 to 400 A

Minimum recommended enclosure dimensions

	Reference			No. of	A		B		C		J		J1		K		K1		K2	
Rating (A)				poles	in	mm														
100-200	97232010	-	97232020	2 P	24	610	24	610	12	305			1.37	35	7.67	195	2.67	68	12	305
	97233010	-	97233020	$3 P$							6.3	160								
	97234010	-	97234020	4 P							8.26	210								
260-400	97232026	-	97232040	2 P	32	813	32	813	16	406	8.26	210	1.37	35	7.67	195	3.84	97.5	15	381
	97233026	-	97233040	$3 P$																
	97234026	-	97234040	4 P							10.63	270								

TSE technical guide

The applications p. 112
Types of transfer switching p. 113
The sources p. 114
The loads p. 114
Typical electrical diagrams p. 115
Automatic transfer p. 126
Specific applications p. 128
IEC 60947-6-1 standard p. 129

Transfer Switching Equipment (TSE) in LV installations

The applications

Introduction

The word transfer is applied to any application requiring a switching operation from one power circuit to another.
The transfer concept is mainly applied to two sources requiring changeover, one considered as a main power supply and the other one as an alternate source or backup supply.

The expression 'normal/emergency' is used to name this backup function. The most useful transfer application concerns installations requiring switching to an alternate power supply in case of loss of the main's network (electricity provider, hospital,...).
Another typical application is "Genset/Genset", and this is when the load is supplied by two generators.

Normal/emergency applications

Mains/Genset application

Mains/Mains application

Genset/Genset application

'Normal/emergency' applications are dedicated to safety installations. They ensure continuity in the supply to the loads and facilitate evacuation of the building for security matters. Typical safety equipment include lighting, alarm systems (fire..), smoke extraction systems, fire pumps, air compressors, sprinkler systems, lifts, ...

Other typical applications

Switching between loads

Switching the power supply from one load to another generates redundancy with a balanced operating time for the two loads.

Earthing

Safely isolating a load from the supply whilst earthing equipment such as motors or electrical lines. This enables work to be carried out downstream of the transfer switch in total safety.

Phase and rotation inversion on motors

Inversion between two out of three phases supplying a motor in order to modify the direction of rotation. This application requires a delay in the off position to prevent damage to the equipment.

Bypass

Isolation of the a transfer switch, a UPS or other equipment for scheduled maintenance or tests. This is done by safely disconnecting upstream and downstream circuits, whilst continuing to supply the load via a parallel circuit referred to as a Bypass circuit.

Transfer Switching Equipment (TSE)
 in LV installations

Types of transfer switching

Break before make (Open Transition)

The transfer from one source to a second source goes through a 0 position to ensure that the main and alternate source do not overlap. An off time can be counted down to allow the load residual voltage to decrease below a non critical value before transferring. Transferring the load too quickly to another source can lead to power transfers between the load and the supply, which often cause damage. This can potentially damage sensitive equipment and cause protection devices to trip. The 0 position is a stable safe off position, which enables work to be carried out downstream of the transfer switch in safely once padlocked. The off time delay setting should be configured according to the equipment installed.
The international standard IEC 60947-6-1, dedicated to transfer switching equipment, states that any time delay or off-time provided in the total operating transfer time, from the normal to the alternative or the alternative to the normal supply, shall not be less than 50 ms . For applications that require a faster transfer time it is recommended to include adequate measurement and protection in the installation. Typically sync check relays. If this time is not respected, then the installation must have adapted synchronisation and protection functions.

Positions

I

II
0

SOCOMEC transfer switching equipment is designed as open transition that meets the requirements for most applications. In fact for most applications the backup supply is rarely a hot standby (example a genset needs to be started) whilst critical loads are usually supplied through a UPS.

Closed transition (Synchronous transfer)

Depending on the local network regulations the normal and the alternative source may temporarily run in parallel for a a period of <100ms. This is typically used for scheduled transfers, for example returning to the Normal source from the alternative source.
To allow a synchronised transfer the two sources must be in sync to allow the transfer:

- Their phases angles must be in phase (less than a 5° difference).
- Their frequency and amplitudes are virtually identical (less than 0.2 Hz and $5 \% \mathrm{~V}$.
When synchronised within these limits a scheduled or return to normal supply transfer may take place without a blackout time allowing continuity of service.
When the Normal source is lost, or the power supplies cannot be synchronised (out of limits explained above) the transfer is carried out in open transition.

Positions

\square

$1+11$

Asynchronous Transfer

This type of transfer mode is typically applicable to applications with large asynchronous motor loads. A fast open transition transfer is used to allow a direct transfer without having to stop the motor. This transfer time is usually less than 50 ms and achievable safely when using a transfer switch coupled with a sync check relay. Although the transfer is carried out in open transition without overlapping contacts, the same conditions (in terms of voltage, phase angle and phase angle) as with closed transition apply.

$\mathrm{a}^{-} \angle 98^{-5 s y e}$

Positions

II
atys_857_b

Transfer Switching Equipment (TSE) in LV installations

The sources

Types of sources

The source supplies can be described as follows:

- One source considered as priority (normal source): a power grid/ network through one or several transformers in parallel. Possible source redundancy can be achieved using an alternative source to ensure continuity of power in case of the normal supply failure.
- One alternative (backup source): a power generating plant (gensets, turbines, fuel cells, UPS, wind farms, ...)

Classification of safety power supplies

In accordance with the standard NFC 15-100, governing Low voltage electrical installations, a safety power supply allows devices critical for personal safety to be kept in operational condition. This type of power supply is categorised as follows:

Category	Transfer time
No shutdown	Continuous power supply
Short shutdown	$\leq 0.5 \mathrm{~s}$
Medium shutdown	$\leq 10 \mathrm{~s}$
Long shutdown	$>10 \mathrm{~s}$

The loads

The transfer mode and the type of emergency sources to use are linked to the loads available.

Load criticality and sensitivity

Loads can generally be classified by two main criteria; their criticality,
i.e. whether or not they require backup power, and their sensitivity, i.e.
the blackout time permitted.

Various categories have been identified:

- Critical equipment that can not accept shutdown. They are supplied by a UPS to ensure service continuity in case of main's supply shutdown. Their power capacity is limited and depends on the load's consumption, the battery level of charge and maintenance.
- Essential equipment: a fast return of power is required (from a few seconds to several minutes).
- Non-essential equipment: only powered back on after the normal supply returns and transfer back from the alternative to the main supply is done.

Example of load criticality: NFC 15211

Installations in medical premises

	Shutdown
Level 1: Surgical room, intensive care...	None
Level 2: Postsurgical Monitoring ...	<15 sec
Level 3: Radiology ...	15 sec to 30 min

Transfer Switching Equipment (TSE) in LV installations

Typical electrical diagrams

The following diagrams offer technical solutions based on SOCOMEC transfer switches, in order to meet most of the ATS installation diagrams made with others technologies.

Choosing the right changeover switch

Socomec changeover switches aim at ensuring ever more efficient ways to guarantee the continuity of distribution and, therefore, the rate of availability of your energy.
Those changeover switches can be used not just for Normal/ Backup operation, but also for managing the switching of loads or the connection of equipment to earth.

In addition to the rating and the related electrical breaking specifications, the selection criteria are:

- type of control
- installation restrictions inside the enclosure

Furthermore, these solutions based on open transition switching and integrating interlocking, guarantee there will be no overlapping between the Normal source and the alternative source.

Glossary

Transformer

CL Critical load

NCL Non-critical load

Typical solution: circuit breaker, contactor switch or motorised switch
Socomec Solution: motorised switch

Protection are not shown on the following diagrams

Transfer Switching Equipment (TSE)
 in LV installations

Transfer between 2 sources - 1 busbar

S1 (kVA) = S2 (kVA)
Typical solution

SOCOMEC solution

Truth table

S1	S2	Typical solution	SOCOMEC	Load
0	0	X:	X:	Not supplied
0	1	P2	Q2	Supplied
1	0	$P 1$	Q1	Supplied
1	1	$*$	$*$	Supplied

* depends on the preferred source

Advantages of the Socomec solution

Operation

- Only one emergency handle
- Secured padlocking system

Implementation

- Only one product (built-in solution)
- Compact design
- Plug and Play
- Mechanical and electrical interlocking are built-in

SOCOMEC products

Mains/Mains - Mains/Genset:

- ATyS or ATyS M, models t , g or p

Genset/Genset

- ATyS d M, ATyS r or ATyS d, ATyS S + C40

- ATyS d M, ATyS r or ATyS d, ATyS S + C20 or C30

Transfer Switching Equipment (TSE)
 in LV installations

Transfer between 2 sources - 2 busbars

1) Sources are usually 1 transformer and 1 genset: loads are split between critical and non critical

First type of architecture: S1 (kVA) > SG (kVA)

Typical solution

SOCOMEC solution

Second type of architecture: $\mathrm{S} 1(\mathrm{kVA})>\mathrm{S} 2(\mathrm{kVA})$

Typical solution

SOCOMEC solution

wumul vaic A

Truth table

T1	G	Typical solution	SOCOMEC	NCL	CL
0	0	X:	X:	Not supplied	Not supplied
0	1	$P 2$	Q2	Not supplied	Supplied
1	0	$P 1+P 3$	Q1	Supplied	Supplied

Transfer Switching Equipment (TSE)
 in LV installations

Transfer between 2 sources - 2 busbars (continued)

2) Sources are 2 transformers: loads are not differentiated

S1 (kVA) = S2 (kVA)

Typical solution

SOCOMEC solution

Truth table

T1	T2	Typical solution	SOCOMEC	Loads
0	0	$X:$	X:	Not supplied
0	1	$P 2+P 3$	Q2 Q3	Supplied
1	0	$P 1+P 3$	Q1+Q4	Supplied
1	1	$P 1+P 2$	Q1 +Q2	Supplied

Advantages of the Socomec solution

Operation

- Only one emergency handle (2 in the last case)
- Secured padlocking system
- In the first case (between transformer and genset), a motorised switch can be added on the Non Critical Loads for optional disconnection

Implementation

- Fewer products
- Compact design
- Plug and Play
- Mechanical and electrical interlocking are built-in

SOCOMEC products

Mains/Mains - Mains/Genset:

- ATyS or ATyS M, models t, g or p

- ATyS d M, ATyS r or ATyS d, ATyS S + C20 or C30

Motorised switch as an option on Non Critical Loads

- SIRCO MOT AT

\circ
$\stackrel{0}{0}$
0
0
$\frac{0}{5}$

Transfer Switching Equipment (TSE)
 in LV installations

Transfer between 2 sources - 3 busbars

1) Sources are 2 transformers

S1 (kVA) = S2 (kVA)

Typical solution

SOCOMEC solution

4
$\stackrel{4}{0}$
0
0
5
0
0

Truth table

T1	T2	Typical solution	SOCOMEC	CL	NCL
0	0	X:	X:	Not supplied	Not supplied
0	1	$P 2+P 3$	Q3 + Q4	Supplied	Not supplied
1	0	$P 1+P 3$	$Q 1+$ Q2	Supplied	Not supplied
1	1	$P 1+P 2+P 4$	$Q 1+Q 4+Q 5$	Supplied	Supplied

2) Sources are 1 transformer and 1 genset:

S1 (kVA) > S2 (kVA)

Typical solution SOCOMEC solution

cumul ubt A

Truth table

T1	G	Typical solution	SOCOMEC	CL	NCL
0	0	$X:$	N:	Nupplied	
0	1	$P 2+P 3$	Q2	Supplied	
1	0	$P 1+P 3+P 4$	$Q 1+Q 3$	Not supplied	

Transfer Switching Equipment (TSE)
 in LV installations

Transfer between 2 sources - 3 busbars (continued)

Advantages of the Socomec solution

Operation Implementation

- Only 2 or 3 emergency handles instead of 4 Redundancy of P3
- Secured padlocking system
- In the second case (between transformer and genset), a motorised switch can be added on the Non Critical Loads for optional disconnection
- Fewer products
- Compact design
- Plug and Play
- Mechanical and electrical interlocking are built-in

SOCOMEC products

Mains/Mains - Mains/Genset:

- ATyS or ATyS M, models t, g or p

Motorised switch as an option on Non Critical Loads

- SIRCO MOT AT

- ATyS d M, ATyS r or ATyS d, ATyS S + C20 or C30

Transfer Switching Equipment (TSE)
 in LV installations

Transfer between 2 sources - 4 busbars

1) Sources are 2 transformers

S1 (kVA) = S2 (kVA)

Typical solution

SOCOMEC solution

Truth table

T1	T2	Typical solution	SOCOMEC	CL	NCL
0	0	X:	X:	Not supplied	Not supplied
0	1	$P 2+P 3$	Supplied	Not supplied	
1	0	$P 1+P 3$	Q1 + Q4	Supplied	Not supplied
1	1	$P 1+P 2+P 4+P 5$	$Q 1+Q 2+Q 5+Q 6$	Supplied	Supplied

Advantages of the Socomec solution

Operation

- Only 4 emergency handles instead of 5
- Redundancy of P3
- Secured padlocking system

Implementation

- Fewer products
- Compact design
- Plug and Play
- Mechanical and electrical interlocking are built-in

SOCOMEC products

Mains/Mains - Mains/Genset:

- ATyS or ATyS M, models t, g or p

Motorised switch as an option on Non Critical Loads

- SIRCO MOT AT

- ATyS d M, ATyS r or ATyS d, ATyS S + C20 or C30

Transfer Switching Equipment (TSE)
 in LV installations

Transfer between 3 sources - 1 busbar
$\mathrm{S} 1(\mathrm{kVA})=\mathrm{S} 2(\mathrm{kVA})=\mathrm{SG}(\mathrm{kVA})$

Typical solution

SOCOMEC solution

Truth table
Standard solution

T1	T2	G	Typical solution	SOCOMEC	Load
0	0	0	X:	X:	Not supplied
1	0	0	P1	Q1 + Q3	Supplied
0	1	0	P2	Q2 + Q3	Supplied
0	0	1	P3	Q4	Supplied

Advantages of the Socomec solution

Operation

- Only 2 emergency handles instead of 3
- Secured padlocking system

Implementation

- Compact design
- Plug and Play
- Mechanical and electrical interlocking are built-in

SOCOMEC products

Mains/Mains - Mains/Genset:

- ATyS or ATyS M, models t, g or p

Genset/Genset

- ATyS d M, ATyS r or ATyS d, ATyS S + C40

- ATyS d M, ATyS ror ATyS d, ATyS S + C20 or C30

Transfer Switching Equipment (TSE)
 in LV installations

Transfer between 3 sources - 2 busbars
First type of architecture: S1 (kVA) = S2 (kVA) > SG (kVA)

Typical solution

SOCOMEC solution

Second type of architecture: S1 (kVA) $=$ S2 (kVA) > SG (kVA)

Typical solution

cumui viti A

COMUT 062 A

Truth table

T1	T2	G	Typical solution	SOCOMEC	CL	NCL
0	0	0	X:	X:	Not supplied	Not supplied
1	0	0	$P 1+P 4$	$Q 1+$ Q3	Supplied	Supplied
0	1	0	$P 2+P 4$	$Q 2+$ Q3	Supplied	Supplied
0	0	1	$P 3$	Q	Supplied	Not supplied

Transfer Switching Equipment (TSE)
 in LV installations

Transfer between 3 sources - 2 busbars (continued)
Third type of architecture: S1 (kVA) = S2 (kVA) >SG (kVA)

Typical solution

SOCOMEC solution

cumui utia A

Truth table

T1	T2	G	Typical solution	SOCOMEC	CL	NCL
0	0	0	$X:$	X:	Not supplied	Not supplied
1	0	0	$P 1+P 4$	$Q 1+Q 4+Q 5$	Supplied	Supplied
0	1	0	$P 2+P 4$	$Q 3+Q 2+Q 5$	Supplied	Supplied
0	0	1	$P 3$	$Q 6$	Supplied	Not supplied
1	1	0	$P 1+P 2$	$Q 1+Q 2+Q 5$	Supplied	Supplied

Fourth type of architecture: $\mathrm{S} 2(\mathrm{kVA})>\mathrm{S} 1(\mathrm{kVA})$ et $\mathrm{S} 2(\mathrm{kVA})>\mathrm{S} 3(\mathrm{kVA})$

Typical solution

COMUT 064 A

Truth table

| T1 | T2 | T3 | Typical solution | SOCOMEC | CL1 | CL2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | $X:$ | X: | Not supplied | Not supplied |
| 1 | 0 | 0 | $P 1$ | Q1 | Supplied | Not supplied |
| 0 | 1 | 0 | $P 2+P 4$ | Q2 + Q4 | Supplied | Supplied |
| 0 | 0 | 1 | $P 3$ | Q5 | Not supplied | Supplied |
| 1 | 0 | 1 | $P 1+P 3$ | $Q 5+Q 1$ | Supplied | Supplied |

Transfer Switching Equipment (TSE) in LV installations

Transfer between 3 sources - 2 busbars (continued)
Advantages of the Socomec solution

Operation

- Only 2 or 3 emergency handles instead of 4 or 5
- A motorized switch can be added to the Non Critical Loads for optional disconnection
- Secured padlocking system

Implementation

- Compact design
- Plug and Play
- Mechanical and electrical interlocking are built-in

SOCOMEC products

Mains/Mains - Mains/Genset:

- ATyS or ATyS M, models t, g or p

Motorised switch as an option on Non Critical Loads

- SIRCO MOT AT
- ATyS d M, ATyS r or ATyS d, ATyS S + C20 or C30

Transfer Switching Equipment (TSE) in LV installations

Automatic transfer

Introduction

The automatic transfer, commonly known as the "ATS Controller", can be either external to the transfer switching equipment, or integrated in the product. The main functions of these controllers, are listed below.

Monitoring of voltages and frequency

Usually, controllers include at least the monitoring of voltages and frequencies.
Monitoring these values enable:

- A problem with the source to be detected if the voltage or frequency are outside of the limits (whether these are set by the controller or adjusted to customer requirements). The source will then be declared unavailable, and the sequence for transferring to the secondary source will be started.
- Validate the presence of the backup source to allow the transfer.

High and low thresholds with time delay define the stable power supply range of the load. High and low hysteresis levels are generally associated with a new stable condition.

Monitoring of the phase rotation sequence

For certain applications, particularly rotating machine loads on threephase networks, it may be recommended that the direction of phase rotation is monitored. This monitoring will ensure that the direction of rotation of the two sources is consistent. If not consistent, the source will not be declared available.

Transfer Switching Equipment (TSE) in LV installations

Automatic transfer cycles

Loss and return of the priority source

- Starting the cycle: the product is in the stable position on the priority source, and the latter is present.
- If the priority source has disappeared (end of the time delay): - If the secondary source is a transformer, the availability of this source is verified, then the transfer is initiated.
- If the secondary source is a generator, the generator starting order is sent before its availability is verified. Then the transfer is initiated.
- If the priority source returns, the controller checks whether it is actually deemed to be present before initiating the transfer back to it.
- If a generator is used as the secondary source, the generator starting contact is only stopped after a time delay has elapsed. This time delay starts counting after the product returns to the priority position. This allows for an a slow cooling down of the genset.

Test cycles

Test On Load

Many standards and circulars now require periodic tests to be carried out on electrical installations and equipment. Healthcare establishments are required by circular DHOS/E4 to have monthly tests of the normal and backup installations carried out and standard IEC 60364-7-710 requires annual operating tests of the changeover switches (standard dedicated to "Electrical installations of buildings - Requirements for special installations or locations - Medical locations").
With the ATS automated control, it is possible to run a test cycle on the transfer switching equipment. This test, commonly known as the test on load, simulates the loss of the priority network, starts the backup source and initiates the transfer sequence.

Test Off Load

It is also possible to run a test cycle on the generator. This test, commonly known as the test off load, consists of sending a starting order to the generator, without switching the load.

Engine Exerciser (Programmed periodic startup)

This function is used to programme on load or off load tests to a scheduled frequency (daily, monthly, annually), typically for scheduled maintenance. In addition, it is common that the test is activated periodically, by communication or via an external contact.

Transfer Switching Equipment (TSE) in LV installations

Specific applications

Automatic transfer inhibition

During normal operation, the controller takes over the product and manages the automation. In certain cases, (for example if a protection is triggered off upstream), it may be necessary to remotely intervene and prevent automatic operation. This is possible by activating a programmable contact on the ATS controller that is dedicated to the inhibition function to pause the automation.

Changing to priority Source

The transfer applications between two transformers may require periodic reallocation of the priority source.
It is preferential in this case to try and preserve the same lifetime on both transformers and to determine the preferred source, based on the power consumption of the load together with the power capacity of the source.
This change in priority may be carried out locally via the product interface, remotely via a potential-free contact or via the communication.
Specific time and cycle sequences remain the same. Only the position considered as having priority is modified.

Controlled transfer

Following a return to the priority source, the transfer back to it from the backup source may be initiated automatically or manually. The latter option enables controlled switching of the load. Therefore, the transfer remains blocked (load supplied by the backup source) whilst awaiting the external transfer order. The automatic sequence remains operational and initiates the transfer in case of loss of the emergency source.

External Control of the positions

The Transfer system allows autonomous operation of the system. However, position of the switch can be activated remotely or via user handling. This control mode externally overrides the switch positions (I, 0 , III, whilst taking over control of automatic operation.

Return to position 0

In certain cases, depending on the type of switching equipment used, the controller may suggest a function returning to position 0 with no power supply (tripping). This function is used to protect the load in the event of an unstable source and to prevent on-load starting, if there are concerns about the generator.

Load shedding

Normal and emergency supplies feeding the load are generally of a different type: Mains (transformer) or Generator (genset). Operation in emergency mode can authorise a partial feed back of connected loads (strategic loads only) and enable the backup source to have a lower power capacity than the nominal capacity of the Normal source.
A specific contact can be closed just before transferring the load to the emergency source, to enable previous load shedding. This contact is open after re-transfer from the backup source to the Normal source. The time delay from contact closure to transfer (load shedding timer) can be modified.

Changing to priority Source

Controlled transfer

External Control of the positions

Transfer Switching Equipment (TSE)
 in LV installations

IEC 60947-6-1 standard

IEC 60947-6-1 International standard "Low-voltage switchgear and controlgear - Multiple function equipment - Transfer switching equipment" is dedicated to transfer switches.

This standard applies to all open transition transfer switching equipment (TSE) for power systems rated up to 1000 Vac . or 1500 Vdc . It covers:

- Manually operated transfer switching equipment (MTSE),
- Remotely operated transfer switching equipment (RTSE),
- Automatic transfer switching equipment (ATSE).

Transfer switching equipment is classified according to:

- The method of controlling the transfer: MTSE - RTSE - ATSE
- Their short-circuit capability
- Class PC: TSE that is capable of making and intended for withstanding short-circuit currents with and without a SCPD. Not intended for breaking short-circuit currents. (Contactors can only be used in class PC if they fulfill Class PC test req. (Icm ; Icw).
- Class CB: TSE that is capable of making withstanding and breaking short-circuit currents. Intended for breaking short-circuit currents.
- Class CC: TSE that is capable of making and withstanding short-circuit currents with a SCPD only. Not intended for breaking short-circuit currents.

The standard also defines some utilisation categories for TSE in compliance with the application needs:

Nature of current	Utilisation category Operation A	Operation B	Typical applications
AC-31A	AC-31B	Non-inductive or slightly inductive loads	
Alternating current	AC-32A	AC-32B	Switching of mixed resistive and inductive loads, including moderate overloads
	AC-33A	AC-33B	Motor loads or mixed loads including motors, resistive loads and up to 30\% of incandescent lamp loads

TSE assigned any utilisation category shall comply with the rated making and breaking capacity and the electrical and mechanical operational performance requirements corresponding to the assigned utilisation.
The designation of utilisation categories is completed by the suffix A or B , according to the number of operations required by the application.

To sum up:

- This standard is dedicated to transfer switching equipment and therefore guarantees that the products are «designed and tested» specifically for source changeover applications.
- Transfer switching equipment may come from different technologies that fall under their specific IEC standards:
- Circuit breakers: IEC 60947-2
- Switch disconnects: IEC 60947-3
- Contactor switch: IEC 60947-4-1
- The product markings on the sticker must make reference to the IEC standard for TSE: IEC 60947-6-1.

References list

References	Pages	References	Pages	References	Pages	References	Pages
$11 \mathrm{xx} \times \times \times \mathrm{x}$	18, 19	1509 40xx	18, 22, 61, 63, 66, 80	3954 406x	98	95095 xax	86
13090001	35, 36, 39, 46, 49	1509 41xx	18, 22, 61, 63, 66, 80	3954 41xx	98	$95134 \times x \times$	51
13090011	35, 36, 39, 46	15094200	61,63, 66, 80	41090021	18,21	9513 5xxx	53
$13092 \times x$	35, 36, 46	$152 \mathrm{x} \times \times \times \mathrm{x}$	83	41090320	21,81	$952 \mathrm{x} \times \times \times \mathrm{x}$	61
1309 4xx	35, 36, 39, 46	$153 \mathrm{x} \times \times \times \times$	67, 83	$41091 \times x$	23	9533 30xx	61
13099006	47	$155 \mathrm{x} \times \times \times \times$	63, 66, 82	$41092 \times x$	23	953331 x x	61
13099007	47	1599 0xax	61,63, 66, 83	$41093 x \times x$	18, 20, 61, 63, 66, 80	$953332 x x$	61
13099008	50	15992001	66, 84, 90	$41094 x \times x$	18, 20, 61, 63, 66, 80	$953333 x x$	61
13099056	47	15992009	48, 67, 85	$4150 \times \times \times x$	96	953334 xx	83
$135 \mathrm{x} \times \times \times \mathrm{x}$	36, 46	15993020	83, 87	$4158 \times \times \times$	96, 98, 106	$953335 \mathrm{x} \times$	83
13994006	35, 36, 39, 46, 49	15993030	49, 83, 87	41590021	98, 106, 107	9533 36xx	83
13994016	50	15993031	87	41590022	96, 98, 106, 107	9533 40xx	61
13994017	48	15993040	49, 83, 87	$41592 \times x$	96, 98, 106	9533 41xx	61
$1400102 x$	18, 20, 96, 97	15994001	47, 49, 85	$4159302 x$	96, 98, 106	9533 42xx	61
1400103 x	18, 20, 96, 97	15994064	61,82	4159304 x	96, 98, 106	9533 43xx	61
14001040	96, 97	15994121	48	$4159306 x$	96, 98	9533 44xx	83
$14010 \times 0 \times$	19	$15995 \times \times \mathrm{x}$	67, 82	$4159308 x$	96, 98	9533 45xx	83
1401 152x	18, 20, 96, 97	1599 900x	90	4159 402x	96, 98, 106	9533 46xx	83
1401 153x	18, 20, 96, 97	1599 901x	90	4159 404x	96, 98, 106	95392001	86
14011540	96, 97	1599 903x	91	4159 406x	96, 98	$9543 \times 0 \times x$	63
$1421 \times x \times$	18, 19	$16 \mathrm{xx} \times \times \times \mathrm{x}$	96, 98	4159 408x	96, 98	95492001	86
14232113	18, 19	172x $\times \times \infty \times$	87	$41993 \times x$	97	$9553 \times 0 \times 1$	63
14232114	19	$176 \mathrm{x} \times \times \times$	87	$41994 \times 2 x$	96, 97	95592001	86
14232813	23	$178 \mathrm{x} \times \times \times \times$	89	$419970 \times x$	96, 97	$9573 \times 0 \times x$	66,67
14290000	20	1823 2xx	49	41997146	19	95792001	86
142D $x \times x$ x	96, 97	1823 4xxx	50	41997149	97	$9594 \times 0 \times x$	51,52
$142 \mathrm{E} \times \times \times \mathrm{x}$	97	$18542 \times x$	49	$41 \mathrm{Ax} \times \times \times \mathrm{x}$	18	95990000	85
142F $x \times x$	97	1854 4xx	50	$4212 \times x \times x$	25	95990003	61,67,83
$142 \mathrm{G} \times \times \times \mathrm{X}$	97	188x \times ¢ $\times \mathrm{x}$	50	$4215 \times \infty \times x$	24	95990004	61, 67, 83
14333113	19	192X 0056	82	$48 \mathrm{xx} \times \times \times \times$	66, 84	95990005	54
143D 3113	96, 97	22944016	35, 36, 39, 46	$932 \mathrm{x} \times \times \times \times$	35	95990006	54
143D 38xx	97	261x \times ¢ \times	21,81	$934 \mathrm{x} \times \times \times \times$	36	95990007	54
143E $x \times x$	97	262x \times x $\times x$	21,81	935x \times 人 $\times 1$	36	95990008	54
$143 \mathrm{~F} \times \times \times$	97	263x $\times \times \times x$	21,81	$936 \mathrm{x} \times \times \times \times$	39	9599 001x	54
143G \times ¢ \times X	97	$2694 \times x \times x$	18, 22, 61, 63, 66, 80	938x \times ¢ $\times x$	39	$9599002 x$	54
14433113	18, 19	$2699 \times 0 \times x$	21,81	$95034 \times x \times$	51	9599003 x	54
14433114	19	$27993 \times x \times$	18, 20	$95035 \mathrm{x} x \mathrm{x}$	53	95991004	67, 83
144D 3113	97	2799 700x	23	$95054 \mathrm{x} \times \mathrm{x}$	51	95991006	67, 83
144D 3813	96, 97	27997012	19	$95055 \mathrm{x} \times \mathrm{x}$	53	95991007	85
144E $\times x \times x$	97	2799 704x	18, 19	9506 4xxx	51	95991008	86
$144 \mathrm{~F} \times \times \times$	97	2799 705x	18, 19	$95065 \times x \times$	53	95992010	39, 48, 85
144G $\times x \times x$	97	29xx xxx	22	9509 000x	53	95992020	39, 48, 67, 85
14538113	18, 19, 97	$35 \mathrm{xx} \times \times \times \mathrm{x}$	54	9509001 x	81	95994001	51,52
14548113	97	$39542 \times x$	98, 106, 107	9509002 x	81	95994002	51,52
14930000	19	3954 302x	98, 106, 107	$9509004 x$	81	95994003	51, 52
$1499 \times 0 \times x$	23	3954 304x	98, 106, 107	$9509006 x$	81	95994004	52
15090001	67, 83	3954 306x	98	9509008 x	81	95995012	53
$150930 \times x$	18, 22, 61, 63, 66, 80	3954 31xx	98	9509 01xx	81	$970 \times x \times 0 \times$	107
150931 xx	18, 22, 61, 63, 66, 80	3954 402x	98, 106, 107	$95091 \times x$	53	$972 \mathrm{x} \times \times \times \mathrm{x}$	106, 107, 109
15093200	61,63,66,80	3954 404x	98, 106, 107	95094013	51, 52		

Maquette: SOCOMEC
Réalisation: SOCOMEC
Photographie: Martin Bernhart and Studio Objectif Impression: GRASPO CZ, a.s. Pod Šternberkem 324
76302 Zlín - Czech Republic
IČ: 25586092
Bureau France: Nord Est Offset

MIX
Paper from responsible sources FSC ${ }^{\star}$ C010798

Socomec worldwide

IN EUROPE

BELGIUM

Critical Power / Power Control \& Safety / Energy Efficiency
Tel. +3223400230
Fax +3223462899
info.be@socomec.com

FRANCE

Critical Power / Power Control \& Safety /
Energy Efficiency
Tel. +33145146300
Fax +33 148673112
dcm.ups.fr@socomec.com

GERMANY

Critical Power
Tel. +49621716840
Fax +496217168444
info.ups.de@socomec.com
Power Control \& Safety / Energy Efficiency
Tel. +49 7243652920
Fax +4972436529213
info.scp.de@socomec.com

ITALY

Critical Power
Tel. +390298242942
Fax +390298240723
info.ups.it@socomec.com
Power Control \& Safety / Energy Efficiency
Tel. +39029849821
Fax +390298243310
info.scp.it@socomec.com
NETHERLANDS
Critical Power / Power Control \& Safety /
Energy Efficiency
Tel. +31307600900
Fax +31 306372166
info.nl@socomec.com
POLAND
Critical Power
Tel. +48228257360
Fax. +48 228257370
info.ups.pl@socomec.com
Power Control \& Safety / Energy Efficiency
Tel. +48 914426411
Fax +48914426419
info.scp.p@socomec.com

PORTUGAL
Critical Power / Power Control \& Safety /
Energy Efficiency
Tel. +351261812599
Fax +351261812570
info.ups.pt@socomec.com

ROMANIA

Critical Power / Power Control \& Safety /
Energy Efficiency
Tel. +40213193688
Fax +40213193689
info.ro@socomec.com

SERBIA

Critical Power / Power Control \& Safety /
Energy Efficiency
Tel. +381114043246
Fax +381114043245
info.rs@socomec.com

SLOVENIA

Critical Power / Power Control \& Safety /
Energy Efficiency
Tel. +38615807860
Fax +386 15611173
info.si@socomec.com
SPAIN
Critical Power / Power Control \& Safety /
Energy Efficiency
Tel. +34935407575
Fax +34935407576
info.es@socomec.com
SWITZERLAND
Critical Power
Tel. +41447454080
Fax +41 447454085
info@socomec.ch
TURKEY
Critical Power / Power Control \& Safety /
Energy Efficiency
Tel. +9021654071 20-21-22
Fax +90 2165407127
info.tr@socomec.com
UNITED KINGDOM
Critical Power
Tel. +441285863300
Fax +44 1285862304
info.uk@socomec.com
Power Control \& Safety / Energy Efficiency
Tel. +44 1462440033
Fax +44 1462431143
info.uk@socomec.com

IN ASIA PACIFIC

AUSTRALIA

Critical Power / Power Control \& Safety
Tel. +61 293253900
Fax +61298889544
info.ups.au@socomec.com
CHINA
Critical Power / Power Control \& Safety /
Energy Efficiency
Tel. +862152989555
Fax +862162283468
info.cn@socomec.com
INDIA
Critical Power / Power Control \& Safety /
Energy Efficiency
Tel. +91 4439215400
Fax +914439215450 \& 51
info.in@socomec.com

SINGAPORE

Critical Power / Power Control \& Safety /
Energy Efficiency
Tel. +6565067600
Fax +6564587377
info.sg@socomec.com

THAILAND

Critical Power
Tel. +66294116447
Fax +6629411650
info.ups.th@socomec.com

IN MIDDLE EAST

UNITED ARAB EMIRATES
Critical Power / Power Control \& Safety /
Energy Efficiency
Tel. +971 42998441
Fax +97142998449
info.ae@socomec.com

IN AMERICA

USA, CANADA \& MEXICO
Power Control \& Safety / Energy Efficiency
Tel. +1 6172450447
Fax +16172450437
info.us@socomec.com

OTHER COUNTRIES

NORTH AFRICA

Algeria / Morocco / Tunisia
info.naf@socomec.com

AFRICA

Other countries
info.africa@socomec.com
SOUTH EUROPE
Cyprus / Greece / Israel / Malta
info.se@socomec.com
SOUTH AMERICA
Tel. +34 935407575
info.es@socomec.com
MORE DETAILS
www.socomec.com/worldwide

HEAD OFFICE

SOCOMEC GROUP

SAS SOCOMEC capital 10686000 €
R.C.S. Strasbourg B 548500149
B.P. 60010-1, rue de Westhouse

F-67235 Benfeld Cedex - FRANCE
Tel. +33388574141
Fax +33388740800
info.scp.isd@socomec.com

[^0]: (1) IP: protection index according to IEC 60529

[^1]: (1) Category with index $A=$ frequent operation - Category with index $B=$ infrequent operation
 (2) 3 -pole device with 2 pole in series for the " + " an 1 pole for the " - ".
 (3) Interphase barriers must be installed on the products.

 4 -pole device with 2 poles in series by polarity.
 (4) The power value is given for information onls, the current values vary from one manufacturer to another. (5) Values given at 690 VAC.

[^2]: （1）For the three－phase version，for complete upstream and downstream protection，please order $2 x$ ；for the single－phase version please order the part just $1 x$ ．

[^3]: (1) 4 pole version - for complete upstream and downstream protection please order quantity 2 ; for 2 pole version order quantity 1 .
 (2) 1 NO/NC contact block for positions I, 0 and II.
 (3) For 127/230VAC networks, please contact your supplier.

[^4]: (1) For complete upstream and downstream protection please order quantity 2.
 (2) 1 NO/NC contact block for positions I, 0 and II.
 (3) For 127/230VAC networks, please contact us.

[^5]: (1) See "Copper bar connection pieces" page 69
 (2) To fully shroud front, rear, top and bottom 4 references required.

 To shroud front switch top and bottom 2 references required.

[^6]: (1) Category with index $A=$ frequent operation - Category with index $B=$ infrequent operation.
 $\begin{array}{ll}\text { (2) } 3 \text {-pole device with } 2 \text { pole in series for the " }+ \text { " an } 1 \text { pole for the " }- \text { ". } & \text { (4) Values given at } 690 \text { VAC. }\end{array}$

 4 -pole device with 2 poles in series by polarity.

[^7]: (1) Instantaneous value. For a complete operation, power should be available during 0.5 s .

[^8]: (1) To be used to connect 4 wires on one terminal. In such a case, 2 lugs are placed side-by-side on one terminal. Please refer to dimensions diagram

